

Home Innovation RESEARCH LABSTM

Cost and Other Implications of Electrification Policies on Residential Construction

Prepared For

## National Association of Home Builders

February 2021

Report No. CR1328-3\_02242021

400 Prince George's Blvd. | Upper Marlboro, MD 20774 | 800.638.8556 | HomeInnovation.com

#### Disclaimer

Neither Home Innovation Research Labs, Inc., nor any person acting on its behalf, makes any warranty, expressed or implied, with respect to the use of any information, apparatus, method, or process disclosed in this publication or that such use may not infringe privately owned rights, or assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this publication, or is responsible for statements made or opinions expressed by individual authors.

#### Condition/Limitation of Use

Home Innovation Research Labs is accredited by IAS in accordance with ISO 17020, ISO 17025, and ISO 17065. The evaluations within this report may or may not be included in the scopes of accreditation. Accreditation certificates are available at iasonline.org.

This report may be distributed in its entirety, but excerpted portions shall not be distributed without prior written approval of Home Innovation Research Labs.

## TABLE OF CONTENTS

| Executive summary ii                                 |
|------------------------------------------------------|
| Acronyms, Abbreviations, and Definitionsv            |
| Background1                                          |
| Methodology1                                         |
| Results7                                             |
| Construction Costs                                   |
| Gas Infrastructure Cost                              |
| Energy Use Costs                                     |
| Comparative Analysis9                                |
| Comparison of Gas Equipment Options14                |
| Impact of Electric to Gas Price Ratio15              |
| Electrification Retrofit Costs                       |
| Life Expectancy of Equipment and Appliances18        |
| Consumer Perceptions of Electric Appliances19        |
| Summary Construction Costs of Electrification23      |
| Conclusions                                          |
| APPENDIX A: Construction Costs                       |
| APPENDIX B: Electrification Retrofit Costs           |
| APPENDIX C: Location Adjustment Factors              |
| APPENDIX D: Reference House                          |
| Reference House Characteristics45                    |
| Reference House Characteristics – Previous Studies47 |

## **EXECUTIVE SUMMARY**

Building electrification is an effort to substitute fuel-burning equipment and appliances with their electric counterparts including heat pumps, heat pump water heaters, and electric appliances for cooking and clothes drying. Electrification is often presented as a strategy for reducing carbon emissions and can be complementary to policies focused on renewable energy generation and storage, electric vehicles, grid-interactive technologies, etc.

This study evaluated the cost impact of electrification strategies on new and existing single-family homes. All-electric houses were compared to houses with natural gas equipment and appliances. Construction costs and energy use costs were estimated for a "Reference House" with multiple equipment configurations and in multiple locations. These costs provided the basis for the comparisons presented in this report.

A baseline single-family, new construction reference house using natural gas for heating, water heating, cooking, and clothes drying was established for four locations selected based on consideration of climate zone and fuel costs. The baseline reference houses were then re-designed to include all-electric equipment using several combinations of electrification options for each location. Construction costs and energy use costs were estimated for the gas and electric houses and used to compare electric houses to gas houses.

In addition, the retrofit cost of electrification for an existing baseline gas house was developed and compared to the retrofit cost of installing replacement gas equipment and appliances. Also investigated were equipment life expectancies and consumer perceptions of electric equipment and appliances.

The table below summarizes the range of electrification costs for an electric house with high efficiency equipment compared to a baseline gas house. The heat pump row takes into account the cost difference between the baseline gas house and the minimum efficiency electric house. For heat pumps, the low and high costs are based on systems that are considered appropriate for the climate zone, and the range includes a ductless heat pump option (heat pump types and efficiencies are discussed further below). For heat pump water heaters, the low cost is for the 50-gallon, 3.25 UEF model in Houston and Baltimore and the 80-gallon, 3.25 UEF model in Denver and Minneapolis, and the high cost is for the 80-gallon, 3.75 UEF model. Although an electrical service upgrade was deemed to be not required for the reference house configurations with a single electric vehicle (EV) charger, the table includes a placeholder for cost where a service upgrade or additional community electrical infrastructure cost may be required. For the EV charger circuits, the low cost is for a single circuit, and the high cost is for two circuits and adding a second electrical panel. Adding EV charging may require upgrading the electrical service from the street to the house. These costs vary by utility territory and can be substantial but are not part of this study. There are potential cost savings for not installating gas infrastructure to the development. These costs also vary by utility and may be typically paid for by the utility or developer.

|                                                                   |                             |        |        |             |              |        | ,+     |        |
|-------------------------------------------------------------------|-----------------------------|--------|--------|-------------|--------------|--------|--------|--------|
| Electric Reference House Component                                | ent Houston Baltimore       |        | Denver |             | Minneapolis  |        |        |        |
|                                                                   | Low                         | High   | Low    | High        | Low          | High   | Low    | High   |
| Heat Pump                                                         | 2,114                       | 5,528  | 1,901  | 8,655       | 8,259        | 9,088  | 7,866  | 8,655  |
| Heat Pump Water Heater                                            | 1,257                       | 2,632  | 1,295  | 2,711       | 2,516        | 2,791  | 2,397  | 2,658  |
| Electric Vehicle charger circuit(s)                               | 617                         | 2,040  | 635    | 2,102       | 65           | 2,163  | 623    | 2,060  |
| Induction cooktop range                                           | 0                           | 997    | 0      | 1,027       | 0            | 1,057  | 0      | 1,007  |
| Total added construction cost, \$                                 | 3,988                       | 11,196 | 3,832  | 14,495      | 11,430       | 15,100 | 10,886 | 14,381 |
| Electrical service upgrade or community electrical infrastructure | Varies by Utility Territory |        |        |             |              |        |        |        |
| Community gas infrastructure cost savings                         |                             |        | Va     | ries by Uti | ility Territ | ory    |        |        |

Range of Construction Costs of Electrification relative to a Baseline Gas Reference House, \$

Key findings based on the estimated construction costs and annual energy costs developed for the Reference House configurations and selected locations are summarized here:

- The overall range of estimated electrification costs for an electric reference house compared to
  a baseline gas reference house is between \$3,988 and \$11,196 in a warm climate (Houston),
  \$3,832 and \$14,495 in a mixed climate (Baltimore), and \$10,866 and \$15,100 in a cold climate
  (Denver and Minneapolis). On the low end of the range, these costs include a heat pump, heat
  pump water heater, and a single EV charger circuit. On the high end of the range, the costs also
  include a cold-cimate heat pump upgrade, second EV charger circuit, a second electrical panel
  (required for a second EV circuit), and an induction cooktop (induction cookware is not
  included). Further costs can include a fee for upgrading electric service and community electric
  infrastructure, which can be substantial. There is a potential cost savings for not providing
  community gas infrastructure.
- The upfront additional cost of an electric house with a high efficiency 2-stage heat pump (noninverter type, 18 SEER/9.3 HSPF) and 80-gallon heat pump water heater (3.75 UEF) compared to a baseline gas house (minimum efficiency natural gas equipment) is \$4,745 in a warm climate (Houston) and \$4,613 in a mixed climate (Baltimore).
- The upfront additional cost of an electric house with a high efficiency inverter heat pump and 80-gallon heat pump water heater (3.75 UEF) compared to a baseline gas house (minimum efficiency natural gas equipment) is \$8,160 in a warm climate (Houston) and \$8,131 in a mixed climate (Baltimore) (warm and mixed climates based on a 19 SEER/10 HSPF inverter heat pump system rated down to 7°F); for a cold climate, the additional cost ranges from \$10,524 (19 SEER/10 HSPF inverter heat pump system rated down to -13°F) to \$11,803 (20 SEER/13 HSPF inverter heat pump system). The higher costs in colder, heating dominated climates are due to the higher cost of heat pumps rated to operate in colder temperatures.
- In the colder climates (Denver and Minneapolis), the more expensive electric equipment also results in higher energy use costs by \$84 to \$404 annually compared to a baseline gas house, and by \$238 to \$650 annually compared to a gas house with high efficiency equipment. Therefore, in colder climates the consumer will be faced with higher upfront construction costs and higher operating costs throughout the life of the equipment.

- In the cooling dominated climate (Houston), the annual energy use cost for the electric house with a high efficiency heat pump and 80-gallon heat pump water heater (3.75 UEF) can be reduced by \$154 (18 SEER/9.3 HSPF 2-stage heat pump) to \$264 (19 SEER/10 HSPF inverter heat pump) compared to a baseline gas house, with simple payback of 27 years to 64 years. Compared to a gas house with high efficiency equipment, the annual energy cost ranges from an increase of \$18 (18 SEER/9.3 HSPF 2-stage heat pump) to a savings of \$85 (19 SEER/10 HSPF inverter heat pump), with simple payback of up to 93 years.
- In the mixed climate (Baltimore), the annual energy use cost for the electric house with a high efficiency heat pump and 80-gallon heat pump water heater (3.75 UEF) ranges from a savings of \$77 (18 SEER/9.3 HSPF 2-stage heat pump) to \$184 (19 SEER/10 HSPF inverter heat pump) compared to a gas baseline house, with simple payback of 44 years to 60 years; however, when compared to a gas house with high efficiency gas equipment, the consumer is again faced with higher upfront construction cost and higher energy use cost.
- The incremental costs for high efficiency gas equipment options relative to a gas baseline are consistent across climates ranging between \$892 and \$2,140; the differences are due to house layout and cost adjustments by location; most payback periods are 10 years or less.
- The retrofit cost of electrification for an exisiting baseline gas house ranges between \$24,282 and \$28,491, not including the additional cost to substitute an induction cooktop (\$1,091-1,157), install an electric vehicle charger circuit (\$1,266-1,343), or install an electrical service upgrade (a potential substantial additonal cost in some cases). By comparison, the retrofit cost of gas equipment and applicances for an exisiting baseline gas house ranges between \$9,767 and \$10,359 using standard efficiency equipment, and between \$12,658 and \$13,425 using high efficiency equipment.
- The ratio of electricity price to natural gas price (each converted to \$/Btu) is a significant factor for comparing the impact of electrification between locations with similar climatic characteristics. The higher the electric-to-gas price ratio, the more expensive it will be to operate electric equipment versus gas equipment.
- The median life expectancy of most gas equipment tends to be longer than electric counterparts: gas furnace (20 years) versus heat pump (15 years); tankless gas water heater (20 years) versus heat pump water heater (12 years); conventional gas and electric storage-type water heaters have about the same life expectancy (10-13 years).

## ACRONYMS, ABBREVIATIONS, AND DEFINITIONS

| AC   | Air Conditioner                        |
|------|----------------------------------------|
| AFUE | Annual Fuel Utilization Efficiency     |
| СОР  | Coefficient of Performance             |
| CZ   | Climate Zone                           |
| EA   | Each                                   |
| ERI  | Energy Rating Index                    |
| GF   | Gas Furnace                            |
| HP   | Heat Pump                              |
| HPWH | Heat Pump Water Heater                 |
| HSPF | Heating Seasonal Performance Factor    |
| IECC | International Energy Conservation Code |
| IRC  | International Residential Code         |
| LF   | Linear Feet                            |
| NAHB | National Association of Home Builders  |
| O&P  | Overhead and Profit                    |
| SEER | Seasonal Energy Efficiency Ratio       |
| SF   | Square Feet                            |
| UEF  | Uniform Energy Factor                  |

## BACKGROUND

Building electrification is an effort to substitute fuel-burning equipment and appliances with their electric counterparts including heat pumps, heat pump water heaters<sup>1</sup>, electric clothes dryers, and electric cooking appliances including induction cooktops. Building electrification is often presented as a strategy for reducing carbon emissions and can be complementary to policies focusing on electric vehicles, demand management, grid-interactive technologies, renewable energy generation and storage, etc.

To evaluate the cost impact of building electrification strategies, Home Innovation Research Labs determined construction costs and energy use costs using a "Reference House" with multiple equipment configurations and multiple locations. These costs provided a basis for comparing all-electric houses to houses with gas equipment and appliances. Additionally, Home Innovation investigated equipment life expectancies and consumer perceptions regarding electric equipment and appliances.

## **METHODOLOGY**

### **Project Approach**

The primary tasks for this effort were:

- Establish baseline performance levels in accordance with the 2018 IECC and 2021 IECC.
- Establish a baseline single-family Reference House for each performance level using natural gas equipment and appliances for four locations selected based on considerations of climate zone and difference in fuel costs.
- Re-design the Reference Houses to all-electric houses using several possible combinations of features for each house, including optional infrastructure for electric vehicle (EV) charging.
- Evaluate the differences in the cost of construction for gas houses versus electric houses, including any cost to the builder related to upgrading the electrical service.
- Evaluate the cost of energy to operate gas houses versus electric houses.
- Document, based on available literature, performance considerations and consumer preferences for electric equipment such as heat pumps, heat pump water heaters, instantaneous electric water heaters, and electric cooktops.
- Evaluate the cost of retrofitting an existing gas Reference House to add electrification features, including optional EV charging infrastructure.

#### **Reference House**

The characteristics of the Reference House were defined for a representative single-family home. The features and representative locations of the Reference House are shown below; additional construction details and basis for selection are provided in Appendix D.

<sup>&</sup>lt;sup>1</sup> Traditional electric-resistance storage water heaters are generally not included in electrification strategies.

Reference House features:

- 2-story, 4-bedroom, vented attic, attached 2-car garage
- Slab-on-grade foundation (Climate Zone 2) or basement foundation (Climate Zones 4-6)
- 2,600 square feet (SF) conditioned floor area above grade:
  - First floor: 1,080 SF with 9-foot ceilings
  - Second floor: 1,520 SF with 8-foot ceilings
  - Basement: 1,080 SF for houses with basements (3,680 SF total)

Reference House locations:

- Houston, TX; Climate Zone 2
- Baltimore, MD; Climate Zone 4
- Denver, CO; Climate Zone 5
- Minneapolis, MN; Climate Zone 6

Reference House configurations:

- There are 8 unique "baseline" configurations (4 locations, 2 performance levels, gas fuel)
- Performance level: each baseline house is constructed to the prescriptive thermal envelope requirements of the 2018 IECC or the 2021 IECC; thermal envelope measures remain constant for all analyzed scenarios
- Fuel type: electric houses have all-electric appliances and equipment; gas houses use natural gas for heating, hot water, cooking, and clothes drying

#### **Equipment and Appliance Selection**

The baseline gas houses, and minimum efficiency electric houses, utilize federal minimum efficiency HVAC systems and water heaters. Electrification equipment choices were identified, based on manufacturer product data and feedback from builders, to represent options that would be considered commonly available and suitable for the different climates. A range of high efficiency equipment combinations was modeled for each location to evaluate the relationship between upfront costs and annual energy cost savings for various scenarios.

This study evaluated "air source" heat pumps (i.e., not ground source or geothermal heat pumps). Heat pumps, except ductless heat pumps, utilize electric only backup/supplemental heat (i.e., electric resistance heating elements installed within the air handler, and not a supplemental gas furnace or standalone unit heater). Typically, ductless heat pumps are sized to handle the heating load and do not include supplemental resistance heaters. Houses with ductless heat pumps in colder climates commonly include a supplemental heat source, such as a gas heater, pellet stove, or electric baseboard convectors; for this project, the cost of ductless heat pumps did not include any cost for supplemental heat and the energy model relied only on the capacity of the ductless heat pump to produce heat.

The minimum efficiency heat pump utilizes a single-stage compressor. A system with a two-stage compressor represents the next higher efficiency level. Systems with variable speed compressors ("inverter" drive compressors that provide variable refrigerant flow) provide the highest efficiency ratings; the inverter systems are more suitable for colder climates because these can ramp up to provide higher heating capacities at lower temperatures compared to typical single-stage or two-stage

equipment. Climate-appropriate heat pump options were evaluated based on criteria from various cold climate heat pump programs<sup>2</sup>. Selection of heat pumps in mixed climates will be driven by customer preferences. To continue to meet performance expectations of those homeowners who are used to gas furnace heating, the more expensive inverter heat pumps will be needed. In this study, both types of heat pump equipment are evaluated for Baltimore to provide a range of costs for plausible scenarios based on consumer preferences.

High efficiency water heating options for electric houses consist of heat pump water heaters: 50-gallon and 80-gallon capacities were selected for evaluation. Heat pump water heaters operating in heat pump only mode have a slower recovery than standard electric water heaters, so these are normally operated in "hybrid mode" that allows supplemental electric resistance heaters to operate as needed to maintain water temperature within the tank. The Uniform Energy Factor (UEF)<sup>3</sup> efficiency rating for heat pump water heaters is determined based on the default operational mode as defined by the manufacturer in its product literature; for the heat pump water heaters in this study, hybrid mode is the default mode, so using the UEF in the energy software in effect models the heat pump water heaters in hybrid mode.

Even in hybrid mode, with a tank temperature setpoint of 125°F, the modeling software indicated "unmet showers" for both capacities, indicating the heat pump water heater would run out of hot water before showering needs were met for a typical demand schedule. When set to 140°F, there were unmet showers for the 50-gallon model in colder climates, but there were no unmet showers for the 80-gallon model; the modeling results for unmet showers are provided in Appendix D. To minimize unmet showers, heat pump water heaters were modeled at a tank temperature of 140°F, and construction costs include a mixing valve to temper the water temperature leaving the tank. Further, based on builder feedback that any number of unmet showers may be considered unacceptable, the 80-gallon model was selected for comparison analysis in the Results section.

Higher efficiency gas equipment options also were analyzed to provide a full picture of equipment options available to builders for improving energy performance of homes. In those markets where higher efficiency gas equipment is the prevalent choice, it was also used as a comparative baseline for evaluation of electrification costs.

The selected equipment options and associated efficiencies that were used to develop construction costs and annual energy costs are shown in Table 1.

<sup>&</sup>lt;sup>2</sup> E.g., Northeast Energy Efficiency Partnerships (NEEP), Minnesota Center for Energy & Environment (MNCEE)

<sup>&</sup>lt;sup>3</sup> UEF is the current measure of water heater overall efficiency; the higher the UEF value, the more efficient the water heater; UEF is determined by the Department of Energy's test method outlined in 10 CFR Part 430, Subpart B, Appendix E.

| Reference House                      | Equipment                                                          |
|--------------------------------------|--------------------------------------------------------------------|
|                                      | Gas Furnace (GF): 80 AFUE                                          |
| Gas Baseline                         | Air Conditioner (AC): 13 SEER (14 SEER in CZ2&4)                   |
|                                      | Water Heater (WH): 50 gal, natural draft, 0.58 UEF                 |
|                                      | 50 gal, natural draft, 0.64 UEF                                    |
|                                      | Tankless, direct vent, 0.82 UEF                                    |
| Cas Equipment Options                | Tankless, condensing direct vent, 0.93 UEF                         |
| Gas Equipment Options                | 96 AFUE GF                                                         |
|                                      | 96 AFUE GF + 16 SEER AC                                            |
|                                      | 97 AFUE modulating GF + 16 SEER AC                                 |
| Flactuic Minimum Efficiency          | Heat Pump (HP): 14 SEER/8.2 HSPF                                   |
| Electric Minimum Efficiency          | Water Heater (WH): 50 gal, 0.92 UEF                                |
|                                      | 2-stage HP, 18 SEER/9.3 HSPF                                       |
|                                      | Inverter HP, 19 SEER/10 HSPF rated to 7°F (CZ2&4) or -13°F (CZ5&6) |
|                                      | Inverter HP, 20 SEER/13 HSPF                                       |
| Electrification Equipment<br>Options | Ductless inverter HP, 19 SEER/11 HSPF                              |
| Options                              | 50 gal Heat Pump Water Heater (HPWH), 3.25 UEF                     |
|                                      | 80 gal HPWH, 3.25 UEF                                              |
|                                      | 80 gal HPWH, 3.75 UEF                                              |

#### **Table 1. Equipment Options**

#### **Construction Costs**

Construction costs were developed using RSMeans<sup>4</sup> 2020 Residential Cost Data and RSMeans 2020 Residential Repair & Remodeling Cost Data. Costs for mechanical equipment were sourced from distributor web sites. Construction costs are summarized in the Results section; construction cost details are provided in Appendix A.

Appendix A costs are reported as both total to the builder and total to consumer. The total cost to builder includes overhead and profit (designated in the tables as "w/O&P") applied to individual component costs (materials and labor) to represent the cost charged by the sub-contractor. The total cost to consumer is based on applying a builder's markup of 18.9% to the builder's total cost<sup>5</sup>. For remodeling costs, a markup of 30.1% is applied to the remodeler's total cost to determine the total cost to consumer<sup>6</sup>. These represent national average costs, which were made specific for each home by applying a location adjustment; selected location adjustment factors from RSMeans are listed in Appendix C. For alternative house locations, the Appendix A costs could be modified by applying the appropriate location adjustment factor. The Results section reports total cost to consumer, adjusted for location.

<sup>&</sup>lt;sup>4</sup> RSMeans, <u>https://www.rsmeans.com/</u>

<sup>&</sup>lt;sup>5</sup> As reported in the NAHB Cost of Doing Business Study, 2016 Edition.

https://www.builderbooks.com/cost-of-doing-business-study--2016-edition-products-9780867187472.php

<sup>&</sup>lt;sup>6</sup> As reported in the NAHB Remodeler's Cost of Doing Business Study, 2020 Edition. <u>http://nahbnow.com/2020/05/how-much-does-it-cost-remodelers-to-do-business</u>

Construction costs for this study are based on the following:

- Costs include equipment, associated electrical circuits and gas piping, and installation labor; equipment includes HVAC systems, water heaters, cooking ranges, and clothes dryers.
- Costs for air distribution ducts, water distribution piping, and refrigerant and condensate piping are not included because these would be the same for gas and electric houses (except for the ductless heat pump comparison where the cost of the ducts is subtracted from the system costs and the incremental costs for refrigerant and condensate piping are added to the system costs).
- Costs do not include ducting for heat pump water heaters; for the Reference Houses, water heaters are installed in the attic or basement and ducting is assumed to be not required. Costs would be greater where heat pump water heaters installed in closets or mechanical rooms require ducting.
- Electric houses include a basic electric range with exposed heating elements. Induction cooktop costs are also evaluated. Gas houses include a gas range; in single family detached houses started in 2019 that use natural gas as the primary heating fuel, 90% have a natural gas range or cooktop<sup>7</sup>.
- Gas houses include a gas clothes dryer; in single family detached houses started in 2019 that use natural gas as the primary heating fuel, 40% have a natural gas dryer<sup>8</sup>.
- For gas houses, the construction cost includes gas piping from the street to the house and interior gas piping. Costs for gas infrastructure to the development, which may be paid for by the utility or developer is reported separately as potential cost savings based on estimates developed by others.
- Reference Houses are assumed to have a 200-amp electrical service and panel. Based on an electrical load calculation performed in accordance with the National Electrical Code<sup>9</sup>, a 200-amp service is sufficient for an electric Reference House with a finished basement and one electric vehicle (EV) charger circuit; the electrical load calculation is provided in Appendix D. The design electrical loads for the reference house are within about 11 percent of the panel capacity. An electrical service upgrade would be required for a second EV charger circuit and at some point, for a larger house or a house with additional electric loads such as a well, swimming pool, or electric baseboard heaters. If the existing electrical service from the street is sufficient, the electrical upgrade would normally consist of adding a second electrical panel; upgrading the service from the street, if required, would add significant cost. Any cost to upgrade the electrical service or panel is not included in this report and should be a subject of a follow-up study.
- The same construction cost is used for the 2018 IECC and 2021 IECC Reference Houses in the same location using the same fuel.

<sup>&</sup>lt;sup>7</sup> 46% of all homes had a natural gas range or cooktop; 51% of all homes used natural gas as the primary heating fuel. Home Innovation: 2020 Annual Builder Practices Survey

<sup>&</sup>lt;sup>8</sup> 20% of all dryers are natural gas dryers, eia.gov and 51% of new homes in 2019 used natural gas as the primary heating fuel

<sup>&</sup>lt;sup>9</sup> National Electrical Code: NFPA 70. <u>https://catalog.nfpa.org/NFPA-70-National-Electrical-Code-NEC-C4022.aspx</u>

• Construction costs are developed based on new construction data except for the retrofit of an existing gas house for electrification that includes remodeling cost data.

#### Energy Use Costs

Annual energy use costs were developed using BEopt<sup>10</sup> 2.8.0.0 hourly simulation software and energy prices from the U.S. Energy Information Agency<sup>11</sup>. The natural gas and electricity prices are average annual 2018 residential prices in the state (2019 prices were not yet available during the analysis period of this study).

The energy prices used for this study are shown in Table 2. The table also shows prices for other example locations within the same Climate Zone, and a calculated ratio of electricity price to natural gas price for each location. This ratio is an important indicator for energy cost comparisons for locations with similar climate conditions – the higher the ratio, the more expensive it will be to operate electric equipment versus gas equipment.

|                          | CZ 2                                                                               | CZ 4      | CZ 5    | CZ 6        |              |  |
|--------------------------|------------------------------------------------------------------------------------|-----------|---------|-------------|--------------|--|
| Fuel                     | Houston                                                                            | Baltimore | Denver  | Minneapolis | National Ave |  |
| Electricity, \$/kWh      | 0.1120                                                                             | 0.1330    | 0.1215  | 0.1314      | 0.1287       |  |
| Nat Gas, \$/therm        | 1.142                                                                              | 1.179     | 0.772   | 0.869       | 1.050        |  |
| Elec to Gas Price Ratio* | 3.0                                                                                | 3.4       | 4.8     | 4.6         | 3.7          |  |
|                          | Examples of energy prices in different locations within the same<br>climate zone** |           |         |             |              |  |
|                          | Phoenix                                                                            | New York  | Boston  | Helena      |              |  |
| Electricity, \$/kWh      | 0.1277                                                                             | 0.1852    | 0.2161  | 0.1096      |              |  |
| Nat Gas, \$/therm        | 1.535                                                                              | 1.237     | 1.547   | 0.732       |              |  |
| Elec to Gas Price Ratio* | 2.5                                                                                | 4.6       | 4.3     | 4.6         |              |  |
|                          | Tampa                                                                              | Portland  | Chicago | Burlington  |              |  |
| Electricity, \$/kWh      | 0.1154                                                                             | 0.1098    | 0.1277  | 0.1802      |              |  |
| Nat Gas, \$/therm        | 2.134                                                                              | 1.065     | 0.815   | 1.365       |              |  |
| Elec to Gas Price Ratio* | 1.6                                                                                | 3.1       | 4.8     | 4.0         |              |  |

## Table 2. Energy Prices (source: eia.gov)

\*Calculated by converting fuel prices to \$/Btu, based on 104 kBtu/therm for gas and 3,414 Btu/kWh for electric

\*\* These additional locations are shown for the purpose of demonstrating the range of price ratios and were not used for energy modeling or separate cost analysis except on a limited basis to compare New York to Baltimore to illustrate the impact of different price ratios within the same climate zone.

<sup>&</sup>lt;sup>10</sup> BEopt (Building Energy Optimization Tool) software: <u>https://beopt.nrel.gov/home</u>

<sup>&</sup>lt;sup>11</sup> Energy Information Agency: <u>https://www.eia.gov/</u>

## RESULTS

### **Construction Costs**

Construction costs for various equipment options are summarized in Table 3 for gas houses and Table 4 for electric houses. Cost details are provided in Appendix A. Table 3 shows the baseline cost for gas houses and the incremental cost of gas equipment options. Table 4 shows the incremental cost of electrification equipment options relative to electric houses with federal minimum efficiency equipment.

|                                                                                        | Gas Construction Cost, \$ |           |         |             |  |  |  |
|----------------------------------------------------------------------------------------|---------------------------|-----------|---------|-------------|--|--|--|
| Gas Reference House Configuration                                                      | Houston                   | Baltimore | Denver  | Minneapolis |  |  |  |
| Baseline, total cost                                                                   | 11,132                    | 11,746    | 11,913  | 11,345      |  |  |  |
| Gas equipment options, incremental cost:                                               |                           |           |         |             |  |  |  |
| 50 gal WH, 0.64 UEF                                                                    | 182                       | 188       | 193     | 184         |  |  |  |
| Tankless WH, 0.82 UEF                                                                  | 728                       | 750       | 772     | 735         |  |  |  |
| Tankless condensing WH, 0.93 UEF                                                       | 1,106                     | 1,139     | 1,173   | 1,117       |  |  |  |
| 96 AFUE GF                                                                             | 1,147                     | 1,106     | 1,138   | 1,084       |  |  |  |
| 96 AFUE GF + 16 SEER AC                                                                | 1,317                     | 1,161     | 1,497   | 1,426       |  |  |  |
| 97 AFUE modulating GF + 16 SEER AC                                                     | 2,367                     | 2,243     | 2,611   | 2,486       |  |  |  |
| Adjust if installing 90+ GF AND tankless WH<br>(metal chimney vent no longer required) | (283)                     | (1,019)   | (1,049) | (999)       |  |  |  |

#### **Table 3. Construction Costs for Gas Houses**

### Table 4. Construction Costs for Electric Houses

|                                                                                                              | Electric Construction Cost, \$ |           |        |             |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------|--------------------------------|-----------|--------|-------------|--|--|--|--|
| Electric Reference House Configuration                                                                       | Houston                        | Baltimore | Denver | Minneapolis |  |  |  |  |
| Electrification equipment options, incremental cost relative to federal minimum efficiency electric systems: |                                |           |        |             |  |  |  |  |
| 50 gal HPWH*, 3.25 UEF                                                                                       | 1,257                          | 1,295     | 1,333  | 1,270       |  |  |  |  |
| 80 gal HPWH, 3.25 UEF                                                                                        | 2,373                          | 2,445     | 2,516  | 2,397       |  |  |  |  |
| 80 gal HPWH, 3.75 UEF                                                                                        | 2,632                          | 2,711     | 2,791  | 2,658       |  |  |  |  |
| 18 SEER/9.3 HSPF 2-stage HP                                                                                  | 2,041                          | 2,102**   | N/A    | N/A         |  |  |  |  |
| 19 SEER/10 HSPF inverter HP, rated to 7°F<br>(CZ2&4) or -13°F (CZ5&6)                                        | 5,455                          | 5,620     | 8,288  | 7,893       |  |  |  |  |
| 20 SEER/13 HSPF inverter HP                                                                                  | 8,524                          | 8,782     | 9,040  | 8,610       |  |  |  |  |
| 19 SEER/11 HSPF ductless HP***                                                                               | 3,894                          | 8,856     | 9,117  | 8,683       |  |  |  |  |
| Option: Electric Vehicle (EV) charger circuit                                                                | 617                            | 635       | 654    | 623         |  |  |  |  |
| Option: Substitute induction cooktop range                                                                   | 997                            | 1,027     | 1,057  | 1,007       |  |  |  |  |

\*The 50 gallon HPWH set to 140°F may provide sufficient hot water in Climate Zones 2 & 4 (Houston and Baltimore)

\*\* Standard heat pump may or may not be acceptable to occupants in this climate zone during the heating season.

\*\*\* The cost includes savings for not installing ductwork; the Houston system is less expensive due to one less "head" (wall mounted air handler) because there is no basement, lower overall capacity, and does not include cold climate technology.

## Gas Infrastructure Cost

For gas houses, the construction cost in Table 3 includes gas piping from the street to the house and interior gas piping, but it does not include gas infrastructure to the development, which may be paid for by the utility or developer. The cost of community gas infrastructure to the builder can range from zero to thousands of dollars per house; some reports show an average cost of approximately \$1,400<sup>12</sup>.

## **Energy Use Costs**

The modeled annual energy costs are shown in Table 5 for gas houses and Table 6 for electric houses. Table 5 shows energy costs for baseline houses and for baseline houses with individual gas equipment options. Table 6 shows energy costs for minimum efficiency electric houses and for individual electrification equipment options. Both tables show results for houses constructed in accordance with the prescriptive building thermal envelope requirements for the 2018 IECC and 2021 IECC.

The 2021 IECC also requires selecting an additional energy savings package (options are defined in the 2021 IECC). This requirement is met for the reference houses in Baltimore, Denver, and Minneapolis because the HVAC ducts are 100% inside conditioned space (one of the prescribed options for 2021). For Houston, the 2021 houses were modeled with a tighter building enclosure and ERV installed (also a prescribed option for 2021).

Efficiency ratings for heat pumps are normally based on the system operating in "efficiency mode" although systems are commonly set up in "comfort mode". System efficiency is lower than rated when operating in comfort mode (lower COP ratings by outdoor temperatures). For this analysis, the energy model is based on the rated efficiencies (in efficiency mode). Energy use would be higher where systems are set up in comfort mode.

For the 13 HSPF heat pump option (HVAC3), manufacturer product data was used for the software inputs for variable speed (inverter).

Heat pump water heaters were modeled in "hybrid mode" (supplemental elecric resistance heaters operate as needed to maintain tank water temperature) and at a set point of 140°F to minimize "unmet showers" (running out of hot water before showering needs are met for a typical demand schedule, as indicated by the modeling software).

<sup>&</sup>lt;sup>12</sup> California Building Industry Association (CBIA) survey showed \$1,424; Green Builder article from Oct 2020 reported approximately \$1,400 per single family detached house; Energy Logic presentation showed \$1,300-\$1,500, Green Builder webinar: <u>https://www.greenbuildermedia.com/impact-series-archive-home/the-electrification-wave-implications-for-builders-and-others</u>

|                                                            | Gas House Annual Energy Cost, \$/yr |       |       |               |       |       |       |        |
|------------------------------------------------------------|-------------------------------------|-------|-------|---------------|-------|-------|-------|--------|
|                                                            | Hou                                 | ston  | Balti | Baltimore Den |       | iver  | Minne | apolis |
| Gas Reference House Configuration                          | 2018                                | 2021  | 2018  | 2021          | 2018  | 2021  | 2018  | 2021   |
| Baseline                                                   | 1,501                               | 1,466 | 1,814 | 1,756         | 1,477 | 1,422 | 1,893 | 1,881  |
| w/ 50 gal WH, 0.64 UEF                                     | 1,484                               | 1,448 | 1,797 | 1,739         | 1,465 | 1,410 | 1,881 | 1,869  |
| w/ Tankless WH, 0.82 UEF                                   | 1,454                               | 1,418 | 1,769 | 1,711         | 1,445 | 1,390 | 1,861 | 1,849  |
| w/ Tankless condensing WH, 0.93 UEF                        | 1,440                               | 1,405 | 1,750 | 1,691         | 1,431 | 1,376 | 1,843 | 1,831  |
| w/ 96 AFUE GF                                              | 1,467                               | 1,439 | 1,727 | 1,677         | 1,410 | 1,362 | 1,775 | 1,764  |
| w/ 96 AFUE GF/16 SEER AC                                   | 1,392                               | 1,369 | 1,694 | 1,647         | 1,371 | 1,326 | 1,730 | 1,720  |
| w/ 97 AFUE modulating GF/16 SEER AC                        | 1,391                               | 1,367 | 1,689 | 1,643         | 1,368 | 1,323 | 1,723 | 1,713  |
| w/ 96 AFUE GF/16 SEER AC & 0.82 UEF<br>tankless WH         | 1,328                               | 1,308 | 1,627 | 1,580         | 1,326 | 1,281 | 1,664 | 1,654  |
| w/ 96 AFUE GF/16 SEER AC & 0.93 UEF tankless condensing WH | 1,315                               | 1,294 | 1,607 | 1,560         | 1,312 | 1,267 | 1,647 | 1,637  |

### **Table 5. Annual Energy Costs for Gas Houses**

#### **Table 6. Annual Energy Costs for Electric Houses**

|                                                                          | Electric House Annual Energy Cost, \$/yr |                   |       |        |       |             |       |       |
|--------------------------------------------------------------------------|------------------------------------------|-------------------|-------|--------|-------|-------------|-------|-------|
|                                                                          | Hou                                      | Houston Baltimore |       | Denver |       | Minneapolis |       |       |
| Electric Reference House Configuration                                   | 2018                                     | 2021              | 2018  | 2021   | 2018  | 2021        | 2018  | 2021  |
| Minimum efficiency                                                       | 1,617                                    | 1,595             | 2,118 | 2,054  | NA    | NA          | NA    | NA    |
| w/ 50 gal HPWH set to 140°F, 3.25 UEF                                    | 1,468                                    | 1,448             | 1,919 | 1,854  | 1,858 | 1,791       | 2,628 | 2,611 |
| w/ 80 gal HPWH set to 140°F, 3.25 UEF                                    | 1,454                                    | 1,433             | 1,846 | 1,781  | 1,782 | 1,715       | 2,536 | 2,515 |
| w/ 80 gal HPWH set to 140°F, 3.75 UEF                                    | 1,444                                    | 1,424             | 1,828 | 1,763  | 1,764 | 1,697       | 2,518 | 2,498 |
| w/ 18 SEER/9.3 HSPF 2-stage HP                                           | 1,500                                    | 1,486             | 2,025 | 1,971  | NA    | NA          | NA    | NA    |
| w/ 19 SEER/10 HSPF inverter HP, rated<br>to 7°F (CZ2&4) or -13°F (CZ5&6) | 1,413                                    | 1,404             | 1,925 | 1,880  | 1,859 | 1,812       | 2,614 | 2,598 |
| w/ 20 SEER/13 HSPF inverter HP                                           | NA                                       | NA                | NA    | NA     | 1,825 | 1,782       | 2,552 | 2,536 |
| w/ 19 SEER/11 HSPF ductless HP                                           | 1,397                                    | 1,408             | 1,888 | 1,852  | 1,852 | 1,814       | 2,571 | 2,559 |
| w/ 18 SEER/9.3 HSPF HP & 80 gal 3.75<br>UEF HPWH set to 140°F            | 1,325                                    | 1,312             | 1,734 | 1,679  | NA    | NA          | NA    | NA    |
| w/ 19 SEER/10 HSPF HP & 80 gal 3.75<br>UEF HPWH set to 140°F             | 1,237                                    | 1,229             | 1,630 | 1,585  | 1,586 | 1,538       | 2,297 | 2,280 |
| w/ 20 SEER/13 HSPF HP & 80 gal 3.75<br>UEF HPWH set to 140°F             | NA                                       | NA                | NA    | NA     | 1,550 | 1,506       | 2,230 | 2,215 |
| w/ 19 SEER/11 HSPF ductless HP & 80 gal<br>3.75 UEF HPWH set to 140°F    | 1,230                                    | 1,242             | 1,712 | 1,675  | 1,720 | 1,682       | 2,277 | 2,266 |

## **Comparative Analysis**

The estimated construction costs and modeled annual energy use costs provide the basis to compare electric houses and gas houses. Table 7 compares an electrified house, with selected combinations of equipment options, to a baseline gas house with minimum federal efficiency equipment, for the 2018 IECC performance level. Table 8 makes the same comparisons for the 2021 IECC performance level. The tables show the additional construction cost, annual energy savings (shown as a negative value where there are energy cost increases), and simple payback for the electric house relative to the gas house. Table 9 and Table 10 make similar comparisons except electric houses are compared to gas houses with selected higher efficiency equipment.

Note that other combinations of equipment could be compared using the estimated construction costs and annual energy costs.

| Electric House relative to Gas Baseline House (80 AFUE GF, 13/14 SEER AC, 0.58 UEF WH) (2018 IECC)                                |         |           |        |             |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------|---------|-----------|--------|-------------|--|--|--|
| Electric House Configuration                                                                                                      | Houston | Baltimore | Denver | Minneapolis |  |  |  |
| 14 SEER/8.2 HSPF HP & 50 gal 0.92 UEF WH                                                                                          |         |           |        |             |  |  |  |
| Added construction cost, \$                                                                                                       | 73      | (201)     |        |             |  |  |  |
| Energy savings, \$/yr                                                                                                             | (116)   | (304)     |        |             |  |  |  |
| Simple payback, yrs                                                                                                               | NA      | NA        |        |             |  |  |  |
| <u>14 SEER/8.2 HSPF HP &amp; 80 gal 3.75 UEF HPWH</u><br>set to 140°F                                                             |         |           |        |             |  |  |  |
| Added construction cost, \$                                                                                                       | 2,705   | 2,510     |        |             |  |  |  |
| Energy savings, \$/yr                                                                                                             | 57      | (14)      |        |             |  |  |  |
| Simple payback, yrs                                                                                                               | 47      | NA        |        |             |  |  |  |
| <u>18 SEER/9.3 HSPF 2-stage HP &amp; 80 gal 3.75 UEF</u><br><u>HPWH set to 140°F</u>                                              |         |           |        |             |  |  |  |
| Added construction cost, \$                                                                                                       | 4,745   | 4,613     |        |             |  |  |  |
| Energy savings, \$/yr                                                                                                             | 176     | 80        |        |             |  |  |  |
| Simple payback, yrs                                                                                                               | 27      | 58        |        |             |  |  |  |
| <u>19 SEER/10 HSPF inverter HP (equipment rated</u><br>for 7°F in CZ2&4 or -13°F in CZ5&6) & 80 gal 3.75<br>UEF HPWH set to 140°F |         |           |        |             |  |  |  |
| Added construction cost, \$                                                                                                       | 8,160   | 8,131     | 11,050 | 10,524      |  |  |  |
| Energy savings, \$/yr                                                                                                             | 264     | 184       | (109)  | (404)       |  |  |  |
| Simple payback, yrs                                                                                                               | 31      | 44        | NA     | NA          |  |  |  |
| 20 SEER/13 HSPF inverter HP & 80 gal 3.75 UEF<br>HPWH set to 140°F                                                                |         |           |        |             |  |  |  |
| Added construction cost, \$                                                                                                       |         |           | 11,803 | 11,241      |  |  |  |
| Energy savings, \$/yr                                                                                                             |         |           | (128)  | (337)       |  |  |  |
| Simple payback, yrs                                                                                                               |         |           | NA     | NA          |  |  |  |

#### Table 7. Electric House Compared to Baseline Gas House, 2018 IECC Performance Level

Electric House relative to Gas Baseline House (80 AFUE GF, 13/14 SEER AC, 0.58 UEF WH) (2018 IECC)

| Electric House relative to Gas Baseline House (80 AFUE GF, 13/14 SEER AC, 0.58 UEF WH) (2021 IECC)                                               |         |           |        |             |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|--------|-------------|--|--|--|
| Electric House Configuration                                                                                                                     | Houston | Baltimore | Denver | Minneapolis |  |  |  |
| 14 SEER/8.2 HSPF HP & 50 gal 0.92 UEF WH                                                                                                         |         |           |        |             |  |  |  |
| Added construction cost, \$                                                                                                                      | 73      | (201)     |        |             |  |  |  |
| Energy savings, \$/yr                                                                                                                            | (129)   | (298)     |        |             |  |  |  |
| Simple payback, yrs                                                                                                                              | NA      | NA        |        |             |  |  |  |
| <u>14 SEER/8.2 HSPF HP &amp; 80 gal 3.75 UEF HPWH</u><br><u>set to 140°F</u>                                                                     |         |           |        |             |  |  |  |
| Added construction cost, \$                                                                                                                      | 2,705   | 2,510     |        |             |  |  |  |
| Energy savings, \$/yr                                                                                                                            | 42      | (7)       |        |             |  |  |  |
| Simple payback, yrs                                                                                                                              | 64      | NA        |        |             |  |  |  |
| <u>18 SEER/9.3 HSPF 2-stage HP &amp; 80 gal 3.75</u><br><u>UEF HPWH set to 140°F</u>                                                             |         |           |        |             |  |  |  |
| Added construction cost, \$                                                                                                                      | 4,745   | 4,613     |        |             |  |  |  |
| Energy savings, \$/yr                                                                                                                            | 154     | 77        |        |             |  |  |  |
| Simple payback, yrs                                                                                                                              | 31      | 60        |        |             |  |  |  |
| <u>19 SEER/10 HSPF inverter HP (rated to 7°F in</u><br><u>CZ2&amp;4 or -13°F in CZ5&amp;6) &amp; 80 gal 3.75 UEF</u><br><u>HPWH set to 140°F</u> |         |           |        |             |  |  |  |
| Added construction cost, \$                                                                                                                      | 8,160   | 8,131     | 11,050 | 10,524      |  |  |  |
| Energy savings, \$/yr                                                                                                                            | 237     | 171       | (116)  | (399)       |  |  |  |
| Simple payback, yrs                                                                                                                              | 34      | 48        | NA     | NA          |  |  |  |
| <u>20 SEER/13 HSPF inverter HP &amp; 80 gal 3.75</u><br><u>UEF HPWH set to 140°F</u>                                                             |         |           |        |             |  |  |  |
| Added construction cost, \$                                                                                                                      |         |           | 11,803 | 11,241      |  |  |  |
| Energy savings, \$/yr                                                                                                                            |         |           | (84)   | (334)       |  |  |  |
| Simple payback, yrs                                                                                                                              |         |           | NA     | NA          |  |  |  |

## Table 8. Electric House Compared to Baseline Gas House, 2021 IECC Performance Level

| Electric House relative to Gas House with 96 AFUE GF, 16 SEER AC, 0.93 UEF WH (2018 IECC)                                                        |         |           |        |             |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|--------|-------------|--|--|--|--|
| Electric House Configuration                                                                                                                     | Houston | Baltimore | Denver | Minneapolis |  |  |  |  |
| <u>18 SEER/9.3 HSPF 2-stage HP &amp; 80 gal 3.75</u><br>UEF HPWH set to 140°F                                                                    |         |           |        |             |  |  |  |  |
| Added construction cost, \$                                                                                                                      | 2,605   | 3,331     |        |             |  |  |  |  |
| Energy savings, \$/yr                                                                                                                            | (10)    | (127)     |        |             |  |  |  |  |
| Simple payback, yrs                                                                                                                              | NA      | NA        |        |             |  |  |  |  |
| <u>19 SEER/10 HSPF inverter HP (rated to 7°F in</u><br><u>CZ2&amp;4 or -13°F in CZ5&amp;6) &amp; 80 gal 3.75 UEF</u><br><u>HPWH set to 140°F</u> |         |           |        |             |  |  |  |  |
| Added construction cost, \$                                                                                                                      | 6,020   | 6,849     | 9,429  | 8,980       |  |  |  |  |
| Energy savings, \$/yr                                                                                                                            | 78      | (23)      | (274)  | (650)       |  |  |  |  |
| Simple payback, yrs                                                                                                                              | 77      | NA        | NA     | NA          |  |  |  |  |
| 20 SEER/13 HSPF inverter HP & 80 gal 3.75<br>UEF HPWH set to 140°F                                                                               |         |           |        |             |  |  |  |  |
| Added construction cost, \$                                                                                                                      |         |           | 10,182 | 9,697       |  |  |  |  |
| Energy savings, \$/yr                                                                                                                            |         |           | (238)  | (583)       |  |  |  |  |
| Simple payback, yrs                                                                                                                              |         |           | NA     | NA          |  |  |  |  |
| Ductless HP 19 SEER/11 HSPF & 80g 3.75 UEF<br>HPWH set to 140°F                                                                                  |         |           |        |             |  |  |  |  |
| Added construction cost, \$                                                                                                                      | 4,459   | 10,085    | 10,258 | 9,770       |  |  |  |  |
| Energy savings, \$/yr                                                                                                                            | 85      | (105)     | (408)  | (630)       |  |  |  |  |
| Simple payback, yrs                                                                                                                              | 52      | NA        | NA     | NA          |  |  |  |  |

## Table 9. Electric House Compared to Higher Efficiency Gas House, 2018 IECC Performance Level

| Table 10. Electric House Compared to Higher Eff | ficiency Gas House, 2021 IECC Performance Level |
|-------------------------------------------------|-------------------------------------------------|
|-------------------------------------------------|-------------------------------------------------|

| Electric House relative to Gas House with 96 AFUE GF, 16 SEER AC, 0.93 UEF WH (2021 IECC) |         |           |        |             |  |  |
|-------------------------------------------------------------------------------------------|---------|-----------|--------|-------------|--|--|
| Electric House Configuration                                                              | Houston | Baltimore | Denver | Minneapolis |  |  |
| 18 SEER/9.3 HSPF 2-stage HP & 80 gal 3.75                                                 |         |           |        |             |  |  |
| UEF HPWH set to 140F                                                                      |         |           |        |             |  |  |
| Added construction cost, \$                                                               | 2,605   | 3,331     |        |             |  |  |
| Energy savings, \$/yr                                                                     | (18)    | (119)     |        |             |  |  |
| Simple payback, yrs                                                                       | NA      | NA        |        |             |  |  |
| <u>19 SEER/10 HSPF inverter HP (rated to 7°F in</u>                                       |         |           |        |             |  |  |
| <u>CZ2&amp;4 or -13°F in CZ5&amp;6) &amp; 80 gal 3.75 UEF</u>                             |         |           |        |             |  |  |
| HPWH set to 140°F                                                                         |         |           |        |             |  |  |
| Added construction cost, \$                                                               | 6,020   | 6,849     | 9,429  | 8,980       |  |  |
| Energy savings, \$/yr                                                                     | 65      | (25)      | (271)  | (643)       |  |  |
| Simple payback, yrs                                                                       | 93      | NA        | NA     | NA          |  |  |
| 20 SEER/13 HSPF inverter HP & 80 gal 3.75                                                 |         |           |        |             |  |  |
| UEF HPWH set to 140°F                                                                     |         |           |        |             |  |  |
| Added construction cost, \$                                                               |         |           | 10,182 | 9,697       |  |  |
| Energy savings, \$/yr                                                                     |         |           | (239)  | (578)       |  |  |
| Simple payback, yrs                                                                       |         |           | NA     | NA          |  |  |
| Ductless HP 19 SEER/11 HSPF & 80g 3.75 UEF                                                |         |           |        |             |  |  |
| HPWH set to 140°F                                                                         |         |           |        |             |  |  |
| Added construction cost, \$                                                               | 4,459   | 10,085    | 10,258 | 9,770       |  |  |
| Energy savings, \$/yr                                                                     | 52      | (115)     | (415)  | (629)       |  |  |
| Simple payback, yrs                                                                       | 86      | NA        | NA     | NA          |  |  |

#### Electric House relative to Gas House with 96 AFUE GF, 16 SEER AC, 0.93 UEF WH (2021 IECC)

As the results in Tables 7 through 10 indicate, the upfront additional cost of an electric house with high efficiency electric heat pump and heat pump water heater ranges between \$4,613 and \$11,803 compared to a baseline gas house (minimum efficiency natural gas equipment). The higher cost is associated with colder, heating dominated climates due to the higher cost of heat pumps rated to operate in colder temperatures. In colder climates (Denver and Minneapolis), the more expensive electric equipment also results in higher energy use costs than gas equipment. Therefore, in colder climates the consumer will be faced with higher upfront cost and higher operating costs throughout the life of the equipment.

In the cooling dominated climate (Houston), the energy use cost for the electric house with high efficiency equipment can be reduced by \$154 to \$264 annually compared to a baseline gas house resulting in a simple payback ranging between 27 years and 64 years; compared to a gas house with higher efficiency gas equipment, the change in energy cost ranges from an increase of \$18 to a savings of \$85 annually, with simple payback of 52 years to 93 years. For the electric house with minimum efficiency equipment compared to the baseline gas house, the energy cost increases by \$116 to \$129 annually.

In the mixed climate (Baltimore), the energy use cost for the electric house with high efficiency equipment can be reduced by \$77 to \$184 annually compared to a baseline gas house, with simple paybacks ranging between 44 years and 60 years; compared to a gas house with higher efficiency gas equipment, the consumer is again faced with higher upfront cost and higher annual energy use cost. For the electric house with minimum efficiency equipment compared to the baseline gas house, the energy cost increases by \$298 to \$304 annually.

## **Comparison of Gas Equipment Options**

The estimated construction costs and modeled annual energy use costs also provide the basis for comparing gas equipment options. Table 11 compares two options for a gas house, with selected combinations of high efficiency equipment, to a baseline gas house with minimum federal efficiency equipment, for the 2018 IECC performance level. Table 12 makes the same comparisons for the 2021 IECC performance level. The tables show the additional construction cost, additional energy cost (shown as a negative value where there are energy savings), and simple payback for the efficient gas house relative to the baseline gas house.

The incremental costs for high efficiency gas equipment options are consistent across climates; the differences are due to house layout and cost adjustments by location; most payback periods are 10 years or less.

| Efficient Gas House relative to Baseline Gas House, 2018 IECC |         |           |        |             |  |  |  |  |
|---------------------------------------------------------------|---------|-----------|--------|-------------|--|--|--|--|
| Gas House Configuration                                       | Houston | Baltimore | Denver | Minneapolis |  |  |  |  |
| <u>96 AFUE GF/16 SEER AC &amp; 0.82 UEF WH</u>                |         |           |        |             |  |  |  |  |
| Added construction cost, \$                                   | 1,762   | 892       | 1,220  | 1,162       |  |  |  |  |
| Energy savings, \$/yr                                         | 173     | 187       | 151    | 229         |  |  |  |  |
| Simple payback, yrs                                           | 10      | 5         | 8      | 5           |  |  |  |  |
| 96 AFUE GF/16 SEER AC & 0.93 UEF WH                           |         |           |        |             |  |  |  |  |
| Added construction cost, \$                                   | 2,140   | 1,282     | 1,621  | 1,544       |  |  |  |  |
| Energy savings, \$/yr                                         | 186     | 207       | 165    | 246         |  |  |  |  |
| Simple payback, yrs                                           | 12      | 6         | 10     | 6           |  |  |  |  |

#### Table 11. Gas House Equipment Comparison, 2018 IECC Performance Level

#### Table 12. Gas House Equipment Comparison, 2021 IECC Performance Level

| Efficient das House relati                     | Efficient das house relative to baseline das house, 2021 IECC |           |         |             |  |  |  |  |
|------------------------------------------------|---------------------------------------------------------------|-----------|---------|-------------|--|--|--|--|
| Gas House Configuration                        | Houston                                                       | Baltimore | Denver  | Minneapolis |  |  |  |  |
| <u>96 AFUE GF/16 SEER AC &amp; 0.82 UEF WH</u> |                                                               |           |         |             |  |  |  |  |
| Added construction cost, \$                    | \$1,762                                                       | \$892     | \$1,220 | \$1,162     |  |  |  |  |
| Energy savings, \$/yr                          | \$158                                                         | \$176     | \$141   | \$227       |  |  |  |  |
| Simple payback, yrs                            | 11                                                            | 5         | 9       | 5           |  |  |  |  |
| <u>96 AFUE GF/16 SEER AC &amp; 0.93 UEF WH</u> |                                                               |           |         |             |  |  |  |  |
| Added construction cost, \$                    | \$2,140                                                       | \$1,282   | \$1,621 | \$1,544     |  |  |  |  |
| Energy savings, \$/yr                          | \$172                                                         | \$196     | \$155   | \$244       |  |  |  |  |
| Simple payback, yrs                            | 12                                                            | 7         | 10      | 6           |  |  |  |  |

#### Efficient Gas House relative to Baseline Gas House, 2021 IECC

## Impact of Electric to Gas Price Ratio

To illustrate the impact of the electric-to-gas price ratio described in the methodology section, Table 13 compares electric houses, with selected high efficiency options, to baseline gas houses, using the 2021 performance level, for two locations within the same climate zone: Baltimore (3.4 price ratio) and New York (4.6 price ratio). Table 14 compares an electric house to a gas house with selected high efficiency gas options.

The additional energy costs are higher and payback periods, where there are energy savings, are significantly longer for New York compared to Baltimore despite being in the same climate zone. These differences are primarily due to the higher electric-to-gas price ratio.

Table 15 compares a gas house with selected high efficiency equipment options to a baseline gas house. Paybacks are somewhat shorter for New York compared to Baltimore due to higher energy prices in New York.

#### **Electric House relative to Gas Baseline House Electric House Configuration** Baltimore **New York** 14 SEER/8.2 HSPF HP & 50 gal 0.92 UEF WH Added construction cost, \$ (201) (201)Energy savings, \$/yr (689) (298)Simple payback, yrs NA NA 18 SEER/9.3 HSPF 2-stage HP & 80 gal 3.75 UEF HPWH set to 140°F Added construction cost, \$ 4,613 4,613 77 (93) Energy savings, \$/yr 60 NA Simple payback, yrs 19 SEER/10 HSPF inverter HP & 80 gal 3.75 UEF HPWH set to 140°F Added construction cost, \$ 8,131 8,131 Energy savings, \$/yr 171 38 Simple payback, yrs 48 214

#### Table 13. Electric House Relative to Gas Baseline House, 2021 IECC Performance Level

| Home Innovation Research Labs                                         |
|-----------------------------------------------------------------------|
| Cost Impact of Electrification Strategies on Residential Construction |

# Table 14. Electric House Relative to Gas House with High Efficiency Equipment,2021 IECC Performance Level

| Electric House Configuration                         | Baltimore | New York |
|------------------------------------------------------|-----------|----------|
| 18 SEER/9.30 HSPF HP & 80 gal 3.75 UEF HPWH          |           |          |
| Added construction cost, \$                          | 3,331     | 3,331    |
| Energy savings, \$/yr                                | (119)     | (337)    |
| Simple payback, yrs                                  | NA        | NA       |
| <u>19 SEER/10 HSPF HP &amp; 80 gal 3.75 UEF HPWH</u> |           |          |
| Added construction cost, \$                          | 6,849     | 6,849    |
| Energy savings, \$/yr                                | (25)      | (206)    |
| Simple payback, yrs                                  | NA        | NA       |

#### Electric House relative to Gas House w/96 AFUE GF, 16 SEER AC, 0.93UEF WH

#### Table 15. Gas House Equipment Comparison, 2021 IECC

|                                                | iseline das nouse | -        |
|------------------------------------------------|-------------------|----------|
| Gas House Configuration                        | Baltimore         | New York |
| <u>96 AFUE GF/16 SEER AC &amp; 0.82 UEF WH</u> |                   |          |
| Added construction cost, \$                    | 892               | 892      |
| Energy savings, \$/yr                          | 176               | 224      |
| Simple payback, yrs                            | 5                 | 4        |
| <u>96 AFUE GF/16 SEER AC &amp; 0.93 UEF WH</u> |                   |          |
| Added construction cost, \$                    | 1,282             | 1,282    |
| Energy savings, \$/yr                          | 196               | 244      |
| Simple payback, yrs                            | 7                 | 5        |

#### Efficient Gas House relative to Baseline Gas House

## **Electrification Retrofit Costs**

The estimated cost of electrification to retrofit an existing gas house is summarized in Table 16; details are provided in Appendix B. The analysis is based on starting with an existing baseline gas house, removing existing gas appliances, capping gas lines and chimney vents and abandoning those in place, installing an electric range, dryer, high efficiency heat pump and heat pump water heater, installing associated electrical wiring, and repairing and painting drywall that was removed to install new wiring.

For comparison purposes, the estimated costs to retrofit an existing gas house with gas equipment is shown in Table 17.

|                                                                                            | Retrofit Cost of Electrification |           |          |             |  |  |
|--------------------------------------------------------------------------------------------|----------------------------------|-----------|----------|-------------|--|--|
| Electrification Equipment Options installed in<br>an Existing Gas Baseline Reference House | Houston                          | Baltimore | Denver   | Minneapolis |  |  |
| Install electric range, clothes dryer, 19 SEER/10<br>HSPF HP, 80 gal 3.75 UEF HPWH         | \$24,282                         | \$25,017  | \$28,491 | \$27,134    |  |  |
| Additional incremental cost to substitute a<br>range with an induction cooktop             | \$1,091                          | \$1,124   | \$1,157  | \$1,102     |  |  |
| Additional cost to install one electric vehicle<br>(EV) charger circuit                    | \$1,266                          | \$1,305   | \$1,343  | \$1,279     |  |  |

#### Table 16. Retrofit Cost of Electrification for an Existing Baseline Gas Reference House

## Table 17. Retrofit Cost of Gas Equipment and Appliances for an Existing Gas Baseline Reference House

#### **Retrofit Cost of Gas Equipment and Appliances**

| Gas Equipment Options installed in an Existing<br>Gas Baseline Reference House           | Houston  | Baltimore | Denver   | Minneapolis |
|------------------------------------------------------------------------------------------|----------|-----------|----------|-------------|
| Install gas range, gas dryer, 80 AFUE GF, 14<br>SEER AC, 50 gal 0.56 UEF WH              | \$9,767  | \$10,063  | \$10,359 | \$9,866     |
| Install gas range, gas dryer, 96 AFUE GF, 16<br>SEER AC, tankless condensing 0.93 UEF WH | \$12,658 | \$13,041  | \$13,425 | \$12,786    |

## Life Expectancy of Equipment and Appliances

Table 18 shows the approximate life expectancy of HVAC equipment, water heaters, dryers, and ranges as reported by various organizations. Factors that affect life expectancy of equipment include:

- Proper installation and maintenance
- Proper sizing to minimize on-off cycling
- Climate: air conditioners tend to last longer in colder climates; heat pumps tend to wear out sooner in colder climates
- Corrosive environments, indoor and outdoor including coastal environments
- Intensity of use

|                               | Life Expectancy. median of range (years) |                    |                                   |                      |                        |                                   |                                 |
|-------------------------------|------------------------------------------|--------------------|-----------------------------------|----------------------|------------------------|-----------------------------------|---------------------------------|
| Equipment/Appliance           | DOE <sup>13</sup>                        | NAHB <sup>14</sup> | Consumer<br>Affairs <sup>15</sup> | ASHRAE <sup>16</sup> | HVAC.COM <sup>17</sup> | Consumer<br>Reports <sup>18</sup> | Erie<br>Insurance <sup>19</sup> |
| Gas Furnace                   | 20                                       | 18; 15-20          | 15                                | 18                   | 15-25                  | 15-20                             |                                 |
| Air Conditioner               | 16                                       | 15; 10-15          | 15-20                             | 15                   | 12-15                  | 15                                |                                 |
| Heat Pump                     | 15                                       | 16                 | 10-15                             | 15                   | 16                     | 15                                |                                 |
| Ductless Heat Pump            | 15                                       |                    |                                   |                      |                        |                                   |                                 |
| Gas Storage Water Heater      | 13                                       | 10                 | 8-12                              |                      | 10                     |                                   |                                 |
| Electric Storage Water Heater | 13                                       | 11                 | 8-15                              |                      | 10                     |                                   |                                 |
| Tankless Water Heater         | 20                                       | 20                 | 20                                |                      | 20                     |                                   |                                 |
| Heat Pump Water Heater        | 12                                       |                    | 13-15                             |                      |                        |                                   |                                 |
| Gas Clothes Dryer             |                                          | 13                 |                                   |                      |                        | 10                                | 14                              |
| Electric Clothes Dryer        |                                          | 13                 |                                   |                      |                        | 10                                | 14                              |
| Gas Range                     |                                          | 15                 |                                   |                      |                        |                                   | 19                              |
| Electric Range                |                                          | 13                 |                                   |                      |                        |                                   | 17                              |

#### Table 18. Life Expectancy of Equipment and Appliances

Life Expectancy: median or range (years)

<sup>&</sup>lt;sup>13</sup> U.S. Department of Energy: BEopt software values. <u>https://beopt.nrel.gov/home</u>

<sup>&</sup>lt;sup>14</sup> National Association of Home Builders: Study of Life Expectancy of Home Components, 2007. <u>https://www.interstatebrick.com/sites/default/files/library/nahb20study.pdf</u>

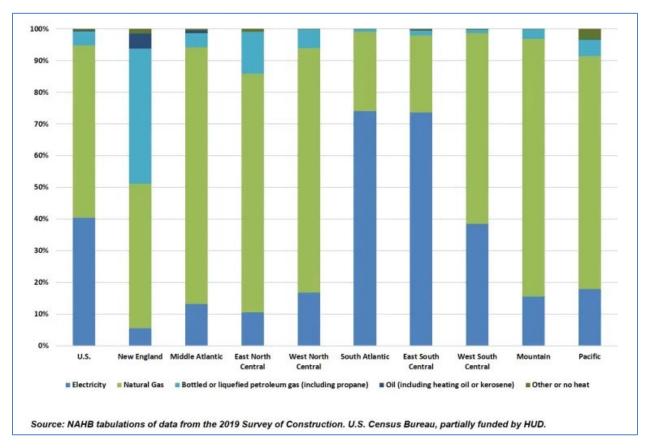
<sup>&</sup>lt;sup>15</sup> Consumer Affairs: Central Air Conditioning. <u>https://www.energy.gov/energysaver/central-air-conditioning</u> Replacing your home's heat pump. <u>https://www.consumeraffairs.com/news/replacing-your-homes-heat-pump-031513.html</u>

<sup>&</sup>lt;sup>16</sup> American Society of Heating, Refrigeration, and Air Conditioning Engineers: Equipment Life Expectancy Chart. <u>https://hvac-eng.com/hvacr-equipment-life-expectancy/</u>

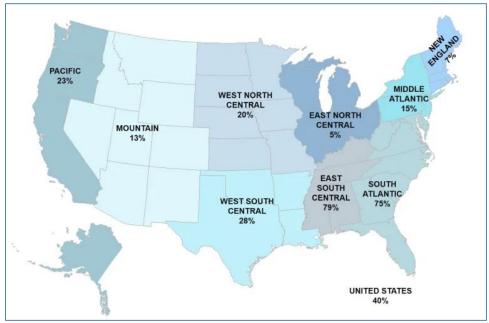
<sup>&</sup>lt;sup>17</sup> HVAC.COM, 2017. <u>https://www.hvac.com/faq/life-expectancy-hvac-systems/</u>

<sup>&</sup>lt;sup>18</sup> Consumer Reports. <u>https://www.consumerreports.org/heat-pumps/most-and-least-reliable-heat-pumps/;</u> <u>https://www.consumerreports.org/central-air-conditioners/most-reliable-central-air-conditioning-systems/;</u> <u>https://www.consumerreports.org/cro/gas-furnaces/buying-guide/index.htm</u>

<sup>&</sup>lt;sup>19</sup> Erie Insurance. <u>https://www.erieinsurance.com/blog/when-to-replace-appliances</u>


## **Consumer Perceptions of Electric Appliances**

Natural gas is the primary heating fuel for the majority of new homes in the United States, as shown in Table 19<sup>20</sup>. The primary heating fuel varies significantly by region of the country; in colder climates, the share of natural gas heating is over 80 percent (Figure 1). In some of the warmer climates, heat pumps approach an 80 percent market share (Figure 2).


| Primary Heating Fuel for New Single Family Home Starts |             |             |  |  |  |
|--------------------------------------------------------|-------------|-------------|--|--|--|
| Year                                                   | Natural Gas | Electricity |  |  |  |
| 2019                                                   | 51%         | 44%         |  |  |  |
| 2018                                                   | 54%         | 40%         |  |  |  |
| 2017                                                   | 56%         | 39%         |  |  |  |
| 2016                                                   | 55%         | 40%         |  |  |  |
| 2015                                                   | 55%         | 40%         |  |  |  |

#### Table 19. Primary Heating Fuel for New Homes (source: NAHB)





<sup>&</sup>lt;sup>20</sup> NAHB Eye on Housing: Air Conditioning and Heating Systems in New Homes, Nov 13, 2020. http://eyeonhousing.org/2020/11/air-conditioning-and-heating-systems-in-new-homes-5/



## Figure 2. Share of New Single-Family Homes Started in 2019 with Air or Ground Source Heat Pump (source: NAHB)

Home Innovation reviewed existing literature regarding consumer perceptions of electric appliances. The results are presented here [added notes are by Home Innovation to expand on specific items]:

- Heat pumps:
  - Do not provide comfort during the heating season; the supply air temperature does not feel warm<sup>21</sup> [The supply air temperature for heat pump systems is typically below 100°F (when the electric supplemental heater is not operating) and can feel uncomfortable particularly compared to a gas furnace with a typical supply air temperature of 105-120°F. Further, the heat pump supply temperature drops as it gets colder outside. For example, manufacturer product data for a conventional heat pump system (non-inverter) typically indicates a supply air temperature of approximately 97°F at 47°F outdoor temperature and 70°F thermostat set point, but supply air temperature drops to 87°F when the outdoor temperature drops to 17°F; inverter heat pump systems designed for cold climates maintain supply air temperature better because these don't lose as much capacity at lower outdoor temperatures, and these also may reduce airflow at the air handler to maintain a target supply air temperature.]
  - High initial installation cost
  - $\circ$   $\;$  High operating cost for heating  $\;$
  - The recovery period, after setting back the thermostat during heating, relies on the electric supplemental heaters to operate which is expensive, so it is more economical to "set-and-forget" the thermostat setting in heating mode. [Some heat pump thermostats

<sup>&</sup>lt;sup>21</sup> Trane: <u>https://www.trane.com/residential/en/resources/heat-pump-vs-furnace-what-heating-system-is-right-for-you/</u>

will increase the set point gradually to minimize electric resistance heating during the recovery period.]

- Ductless heat pumps may need a supplemental heat source during particularly cold periods
- Prone to improper installation, e.g., correct air flow and refrigerant charge<sup>22</sup>
- There are numerous potential mechanical issues<sup>23 24</sup>
- Expensive to repair
- Short life expectancy [Note: see previous section for equipment life expectancies]
- Electric water heaters, conventional electric-resistance storage type:
  - Run out of hot water too soon/slow recovery rate [*Note: The first hour rating (FHR) of* an electric water heater is lower than a gas water heater with the same size tank; larger capacity tanks are commonly selected to help offset this]
  - Expensive to operate
- Heat pump water heaters<sup>25</sup><sup>26</sup>:
  - High potential for energy savings [Note: COP ratings have increased considerably in recent years; energy modeling for this study confirms significant energy savings compared to standard electric water heaters; savings will be less during heating season where the HPWH is installed in conditioned space because it uses heated house air, so the heating system is also indirectly heating the water, and where the HPWH is installed in unconditioned space with lower ambient temperature.]
  - High initial cost
  - Run out of hot water too soon/slow recovery rate. [Note: Heat pump water heaters have a slower recovery than standard electric water heaters, so are typically set to "hybrid" mode that allows the electric resistance heating element to operate as needed. Further, the energy software for this study showed it was necessary to select an 80-gallon capacity and 140F water temperature to avoid "unmet showers"]
  - Noise can be an issue, depending on location in the dwelling
  - Confusion around best selection of settings: hybrid mode; heat pump only mode; electric element only; high demand mode; vacation mode [Note: operating in hybrid mode or electric element only mode reduces efficiency compared to heat pump only mode]

<sup>&</sup>lt;sup>22</sup> ACHRNEWS: <u>https://www.achrnews.com/articles/135097-addressing-poor-heat-pump-installations</u>

<sup>&</sup>lt;sup>23</sup> Carrier: <u>https://www.carrier.com/residential/en/us/products/heat-pumps/heat-pump-troubleshooting/</u>

<sup>&</sup>lt;sup>24</sup> HVAC.com: <u>https://www.hvac.com/blog/the-most-common-heat-pump-problems-how-to-avoid-them/</u>

<sup>&</sup>lt;sup>25</sup> As reported in Field Performance of Heat Pump Water Heaters in the Northeast. Shapiro and Puttagunta, Consortium for Advanced Residential Buildings, Feb 2016. <u>https://www.nrel.gov/docs/fy16osti/64904.pdf</u>

<sup>&</sup>lt;sup>26</sup> Building Green blog: <u>https://www.buildinggreen.com/blog/heat-pump-water-heaters-cold-climates-pros-and-cons</u>

- Reliability, e.g., compressor failure
- Additional maintenance: inspecting and clearing the condensate strainer and drain lines; cleaning the air filter and evaporator
- Cooking
  - Historically, many homeowners prefer a gas cooktop: 90% of new homes with natural gas as the primary heating fuel have a natrual gas range or cooktop<sup>27</sup>
  - More recently, some homeowners consider induction cooktops as superior to gas and conventional electric cooktops<sup>28</sup> [*Note: the modeling software for this project predicted an annual energy savings of \$4 for an induction cooktop*].
- Clothes Drying<sup>29</sup>
  - Electric dryers have a lower initial cost
  - Gas dryers dry loads in about half the time of electric dryers
  - Gas dryers cost less to operate

<sup>&</sup>lt;sup>27</sup> Home Innovation 2019 builder practice survey.

<sup>&</sup>lt;sup>28</sup> Reviewed.com. <u>https://www.reviewed.com/ovens/features/induction-101-better-cooking-through-science</u>

<sup>&</sup>lt;sup>29</sup> Home Depot. <u>https://www.homedepot.com/c/ab/gas-vs-electric-dryers/9ba683603be9fa5395fab902da8afc8</u>

## Summary Construction Costs of Electrification

Table 20 summarizes the range of electrification costs for an electric house with high efficiency equipment compared to a baseline gas house. The heat pump row takes into account the cost difference between the baseline gas house and the minimum efficiency electric house. For heat pumps, the low and high costs are based on systems that are considered appropriate for the climate zone, and the range includes the ductless heat pump option. For heat pump water heaters, the low cost is for the 50-gallon, 3.25 UEF model in Houston and Baltimore and the 80-gallon, 3.25 UEF model in Denver and Minneapolis, and the high cost is for the 80-gallon, 3.75 UEF model. Although an electrical service upgrade was deemed to be not required for the reference house configurations with a single EV charger, the table includes a placeholder for cost where a service upgrade or additional community electrical infrastructure cost may be required. For the EV charger circuits, the low cost is for a single circuit, and the high cost is for two circuits and adding a second electrical panel. Adding EV charging may require upgrading the electrical service from the street to the house; this cost can be substantial but is not included in the table. For gas houses, the construction cost includes gas piping from the street to the house and interior gas piping (these costs are subtracted for electric homes), but it does not account for gas infrastructure to the development, which may be paid for by the utility or developer. The cost of community gas instrastructure to the builder can range from zero to thousands of dollars per house; some reports (developed by others) show an average cost of approximately \$1,400.

| Electric Reference House Component                                | Hou                         | ston  | Balti | more       | Der         | iver   | Minne  | eapolis |
|-------------------------------------------------------------------|-----------------------------|-------|-------|------------|-------------|--------|--------|---------|
|                                                                   | Low                         | High  | Low   | High       | Low         | High   | Low    | High    |
| Heat Pump                                                         | 2,114                       | 5,528 | 1,901 | 8,655      | 8,259       | 9,088  | 7,866  | 8,655   |
| Heat Pump Water Heater                                            | 1,257                       | 2,632 | 1,295 | 2,711      | 2,516       | 2,791  | 2,397  | 2,658   |
| Electric Vehicle charger circuit(s)                               | 617                         | 2,040 | 635   | 2,102      | 654         | 2,163  | 623    | 2,060   |
| Induction cooktop range                                           | 0                           | 997   | 0     | 1,027      | 0           | 1,057  | 0      | 1,007   |
| Total added construction cost, \$                                 | 3,988 11,196                |       | 3,832 | 14,495     | 11,430      | 15,100 | 10,886 | 14,381  |
| Electrical service upgrade or community electrical infrastructure | Varies by Utility Territory |       |       |            |             |        |        |         |
| Community gas infrastructure cost savings                         |                             |       | Va    | ries by Ut | lity Territ | ory    |        |         |

## Table 20. Summary Range of Construction Costs of Electrification Range of Construction Costs of Electrification relative to a Baseline Gas Reference House, \$

## CONCLUSIONS

Based on the estimated construction costs and annual energy costs developed for the Reference House configurations and selected locations, key findings are summarized here:

- The overall range of estimated electrification costs for an electric reference house compared to a baseline gas reference house is between \$3,988 and \$11,196 in a warm climate (Houston), \$3,832 and \$14,495 in a mixed climate (Baltimore), and \$10,866 and \$15,100 in a cold climate (Denver and Minneapolis). On the low end of the range, these costs include a heat pump, heat pump water heater, and a single EV charger circuit. On the high end of the range, the costs also include a heat pump upgrade, second EV charger circuit, a second electrical panel (required for a second EV circuit), and an induction cooktop (induction cookware is not included). The low-end cost for mixed climates depends on the consumer preference for equipment and can be similar to cold climate costs for those customers who are used to the performance of a gas furnace and expect a simialr level of comfort. Further costs can include a fee for upgrading electric service and community electric infrastructure, which can be substantial. There is a potential cost savings for not providing community gas infrastructure.
- The upfront additional cost of an electric house with a high efficiency 2-stage heat pump (noninverter type, 18 SEER/9.3 HSPF) and 80-gallon heat pump water heater (3.75 UEF) compared to a baseline gas house (minimum efficiency natural gas equipment) is \$4,745 in a warm climate (Houston) and \$4,613 in a mixed climate (Baltimore).
- The upfront additional cost of an electric house with a high efficiency inverter heat pump and 80-gallon heat pump water heater (3.75 UEF) compared to a baseline gas house (minimum efficiency natural gas equipment) is \$8,160 in a warm climate (Houston) and \$8,131 in a mixed climate (Baltimore) (warm and mixed climates based on a 19 SEER/10 HSPF inverter heat pump system rated down to 7°F); for a cold climate, the additional cost ranges from \$10,524 (19 SEER/10 HSPF inverter heat pump system rated down to -13°F) to \$11,803 (20 SEER/13 HSPF inverter heat pump system). The higher costs in colder, heating dominated climates are due to the higher cost of heat pumps rated to operate in colder temperatures.
- In the colder climates (Denver and Minneapolis), the more expensive electric equipment also results in higher energy use costs by \$84 to \$404 annually compared to a baseline gas house, and by \$238 to \$650 annually compared to a gas house with high efficiency equipment. Therefore, in colder climates the consumer will be faced with higher upfront construction costs and higher operating costs throughout the life of the equipment.
- In the cooling dominated climate (Houston), the annual energy use cost for the electric house with a high efficiency heat pump and 80-gallon heat pump water heater (3.75 UEF) can be reduced by \$154 (18 SEER/9.3 HSPF 2-stage heat pump) to \$264 (19 SEER/10 HSPF inverter heat pump) compared to a baseline gas house, with simple payback of 27 years to 64 years. Compared to a gas house with high efficiency equipment, the annual energy cost ranges from an increase of \$18 (18 SEER/9.3 HSPF 2-stage heat pump) to a savings of \$85 (19 SEER/10 HSPF inverter heat pump), with simple payback of up to 93 years.
- In the mixed climate (Baltimore), the annual energy use cost for the electric house with a high efficiency heat pump and 80-gallon heat pump water heater (3.75 UEF) ranges from a savings of

\$77 (18 SEER/9.3 HSPF 2-stage heat pump) to \$184 (19 SEER/10 HSPF inverter heat pump) compared to a gas baseline house, with simple payback of 44 years to 60 years; however, when compared to a gas house with high efficiency gas equipment, the consumer is again faced with higher upfront construction cost and higher energy use cost.

- The incremental costs for high efficiency gas equipment options relative to a gas baseline are consistent across climates ranging between \$892 and \$2,140; the differences are due to house layout and cost adjustments by location; most payback periods are 10 years or less.
- The retrofit cost of electrification for an exisiting baseline gas house ranges between \$24,282 and \$28,491, not including the additional cost to substitute an induction cooktop (\$1,091-1,157), install an electric vehicle charger circuit (\$1,266-1,343), or install an electrical service upgrade (a potential substantial additonal cost in some cases). By comparison, the retrofit cost of gas equipment and applicances for an exisiting baseline gas house ranges between \$9,767 and \$10,359 using standard efficiency equipment, and between \$12,658 and \$13,425 using high efficiency equipment.
- The ratio of electricity price to natural gas price (each converted to \$/Btu) is a significant factor for comparing the impact of electrification between locations with similar climatic characteristics. The higher the electric-to-gas price ratio, the more expensive it will be to operate electric equipment versus gas equipment.
- The median life expectancy of most gas equipment tends to be longer than electric counterparts: gas furnace (20 years) versus heat pump (15 years); tankless gas water heater (20 years) versus heat pump water heater (12 years); conventional gas and electric storage-type water heaters have about the same life expectancy (10-13 years).

### INTENTIONALLY LEFT BLANK

26

## APPENDIX A: CONSTRUCTION COSTS

Construction costs were developed using RSMeans<sup>30</sup> 2020 Residential Cost Data and RSMeans 2020 Residential Repair & Remodeling Cost Data. Costs for mechanical equipment were sourced from distributor web sites<sup>31</sup>.

| Component                                     | Unit | Material | Labor  | Total    | w/O&P    | Quantity | Cost   |
|-----------------------------------------------|------|----------|--------|----------|----------|----------|--------|
| Gas Furnace, 80kBtuh, AFUE 80%                | EA   | 761.00   | 157.00 | 918.00   | 1,092.70 | 1        | 1,093  |
| Condenser, 3-ton, 13 SEER                     | EA   | 1,085.00 | 465.00 | 1,550.00 | 1,950.52 | 1        | 1,951  |
| Evaporator coil                               | EA   | 439.00   | 183.00 | 622.00   | 780.82   | 1        | 781    |
| Water heater, 50 gal gas, UEF 0.56            | EA   | 559.00   | 162.00 | 721.00   | 878.64   | 1        | 879    |
| Gas Chimney Vent, 4" dia.                     | LF   | 9.35     | 8.30   | 17.65    | 24.00    | 35       | 840    |
| Gas Chimney Vent, 3" dia.                     | LF   | 7.60     | 7.85   | 15.45    | 21.50    | 4        | 86     |
| Gas piping, 1" main                           | LF   | 7.80     | 6.15   | 13.95    | 18.60    | 25       | 465    |
| Gas piping, 3/4" range                        | LF   | 4.40     | 5.30   | 9.70     | 13.55    | 20       | 271    |
| Gas piping, 1/2" dryer, GF, WH                | LF   | 4.03     | 5.15   | 9.18     | 12.90    | 30       | 387    |
| Furnace circuit: disconnet, 40' #14/2 NM      | EA   | 57.00    | 83.50  | 140.50   | 199.00   | 1        | 199    |
| Wire, add 20' #14/2 NM (furnace)              | LF   | 0.18     | 1.33   | 1.51     | 2.37     | 20       | 47     |
| GFCI 15-amp, 1-pole breaker (furnace)         | EA   | 41.99    |        | 41.99    | 46.19    | 1        | 46     |
| Condenser circuit: disconnect, 40-amp 2-pole  |      |          |        |          |          |          |        |
| breaker, 40' #8/2 NM                          | EA   | 144.00   | 95.50  | 239.50   | 315.00   | 1        | 315    |
| GFCI 30-amp 2-pole breaker (AC)               | EA   | 124.99   |        | 124.99   | 137.49   | 1        | 137    |
| Standard 30/40-amp 2-pole breaker (AC)        | EA   | 10.65    |        | 10.65    | 11.72    | (1)      | (12)   |
| Range circuit, 15-amp outlet & wiring         | EA   | 8.90     | 23.00  | 31.90    | 47.50    | 1        | 48     |
| Gas Range                                     | EA   | 542.00   | 44.50  | 586.50   | 669.63   | 1        | 670    |
| Gas Dryer                                     | EA   | 528.00   | 170.00 | 698.00   | 861.30   | 1        | 861    |
| Gas piping, street to meter, 1/2 polyethylene | LF   | 0.49     | 1.72   | 2.21     | 3.36     | 50       | 168    |
| Excavate utility trench for gas piping        | LF   |          |        |          | 0.68     | 50       | 34     |
| Backfill utility trench for gas piping        | LF   |          |        |          | 0.53     | 50       | 27     |
| Gas service tap into main at street           | EA   |          |        |          | 250.00   | 1        | 250    |
| Set gas meter, by utility                     | EA   |          |        |          |          | 0        | 0      |
| Total to Builder                              |      |          |        |          |          |          |        |
| Total to Consumer                             |      |          |        |          |          |          | 11,345 |
| Denver                                        |      |          |        |          |          | 1.05     | 11,913 |
| Minneapolis                                   |      |          |        |          |          | 1.00     | 11,345 |

#### **Baseline Gas House**

#### **Baseline Gas House adjusted for Baltimore**

| Component                    | Unit | Material | Labor | Total    | w/O&P    | Quantity | Cost    |
|------------------------------|------|----------|-------|----------|----------|----------|---------|
| Total to Builder, from above |      |          |       |          |          |          | 9,542   |
| Condenser, 3-ton, 14 SEER    | EA   | 1,215.00 |       | 1,215.00 | 1,336.50 | 1        | 1,337   |
| Condenser, 3-ton, 13 SEER    | EA   | 1,085.00 |       | 1,085.00 | 1,193.50 | (1)      | (1,194) |
| Total to Builder             |      |          |       |          |          |          | 9,685   |
| Total to Consumer            |      |          |       |          |          |          | 11,515  |
| Baltimore                    |      |          |       |          |          | 1.02     | 11,746  |

<sup>&</sup>lt;sup>30</sup> RSMeans, <u>https://www.rsmeans.com/</u>

<sup>&</sup>lt;sup>31</sup> Mechanical equipment cost sources include: hvacdirect.com; supplyhouse.com; acwholesalers.com; menards.com

### **Baseline Gas House adjusted for Houston**

| Component                    | Unit | Material | Labor | Total    | w/O&P    | Quantity | Cost    |
|------------------------------|------|----------|-------|----------|----------|----------|---------|
| Total to Builder, from above |      |          |       |          |          |          | 9,542   |
| Condenser, 3-ton, 14 SEER    | EA   | 1,215.00 |       | 1,215.00 | 1,336.50 | 1        | 1,337   |
| Condenser, 3-ton, 13 SEER    | EA   | 1,085.00 |       | 1,085.00 | 1,193.50 | (1)      | (1,194) |
| Gas Chimney Vent, 4" dia.    | LF   | 9.35     | 8.30  | 17.65    | 24.00    | 10       | 240     |
| Gas Chimney Vent, 4" dia.    | LF   | 9.35     | 8.30  | 17.65    | 24.00    | (35)     | (840)   |
| Gas piping, 1" main          | LF   | 7.80     | 6.15  | 13.95    | 18.60    | 45       | 837     |
| Gas piping, 1" main          | LF   | 7.80     | 6.15  | 13.95    | 18.60    | (25)     | (465)   |
| Total to Builder             |      |          |       |          |          |          | 9,457   |
| Total to Consumer            |      |          |       |          |          |          | 11,244  |
| Houston                      |      |          |       |          |          | 0.99     | 11,132  |

### Substitute 50-gallon gas natural draft water heater, 0.64 UEF

| Component                                   | Unit | Material | Labor | Total  | w/O&P  | Quantity | Cost |       |
|---------------------------------------------|------|----------|-------|--------|--------|----------|------|-------|
| 50 gal gas nat draft water heater, UEF 0.56 | SF   | 559.00   |       | 559.00 | 614.90 | (1)      |      | (615) |
| 50 gal gas nat draft water heater, UEF 0.64 | SF   | 699.84   |       | 699.84 | 769.82 | 1        |      | 770   |
| Total to Builder                            |      |          |       |        |        |          |      | 155   |
| Total to Consumer                           |      |          |       |        |        |          |      | 184   |
| Houston 0.99                                |      |          |       |        |        |          |      | 182   |
| Baltimore                                   |      |          |       |        |        | 1.02     |      | 188   |
| Denver                                      |      |          |       |        |        | 1.05     |      | 193   |
| Minneapolis                                 |      |          |       |        |        | 1.00     |      | 184   |

### Substitute tankless gas direct vent water heater, 0.82 UEF

| Component                                | Unit | Material | Labor  | Total  | w/O&P    | Quantity | Cost  |
|------------------------------------------|------|----------|--------|--------|----------|----------|-------|
| 50 gal gas water heater, 0.56 UEF        | EA   | 559.00   | 162.00 | 721.00 | 878.64   | (1)      | (879) |
| Tankless gas water heater, 0.82 UEF      | EA   | 799.00   | 171.00 | 970.00 | 1,157.29 | 1        | 1,157 |
| Concentric vent wall termination kit     | EA   | 90.00    |        | 90.00  | 99.00    | 1        | 99    |
| Concentric vent 39" extension            | EA   | 37.59    |        | 37.59  | 41.35    | 1        | 41    |
| Gas Chimney Vent, 3" dia. (WH connector) | LF   | 7.60     | 7.85   | 15.45  | 21.50    | (4)      | (86)  |
| Gas piping, 1/2"                         | LF   | 2.16     | 5.15   | 7.31   | 12.90    | (7)      | (90)  |
| Gas piping, 1"                           | LF   | 7.80     | 6.15   | 13.95  | 18.60    | 7        | 130   |
| 15-amp circuit, toggle, 40' #14/2 NM     | EA   | 57.00    | 83.50  | 140.50 | 199.00   | 1        | 199   |
| GFCI 15-amp, 1-pole breaker              | EA   | 41.99    |        | 41.99  | 46.19    | 1        | 46    |
| Total to Builder                         |      |          |        |        |          |          | 618   |
| Total to Consumer                        |      |          |        |        |          |          | 735   |
| Houston 0.99                             |      |          |        |        |          |          | 728   |
| Baltimore 1.02                           |      |          |        |        |          |          | 750   |
| <b>Denver</b> 1.05                       |      |          |        |        |          |          | 772   |
| Minneapolis 1.00                         |      |          |        |        |          |          | 735   |

| Component                                | Unit | Material | Labor  | Total    | w/O&P    | Quantity | Cost  |  |
|------------------------------------------|------|----------|--------|----------|----------|----------|-------|--|
| 50 gal gas water heater, 0.56 UEF        | EA   | 559.00   | 162.00 | 721.00   | 878.64   | (1)      | (879) |  |
| Tankless gas water heater, 0.93 UEF      | EA   | 1,039.00 | 171.00 | 1,210.00 | 1,421.29 | 1        | 1,421 |  |
| Vent piping, PVC, 2" dia.                | LF   | 3.45     | 2.97   | 6.42     | 8.65     | 20       | 173   |  |
| 2" PVC concentric vent kit               | EA   | 22.49    |        | 22.49    | 24.74    | 1        | 25    |  |
| Gas Chimney Vent, 3" dia. (WH connector) | LF   | 7.60     | 7.85   | 15.45    | 21.50    | (4)      | (86)  |  |
| Gas piping, 1/2"                         | LF   | 2.16     | 5.15   | 7.31     | 12.90    | (7)      | (90)  |  |
| Gas piping, 1"                           | LF   | 7.80     | 6.15   | 13.95    | 18.60    | 7        | 130   |  |
| 15-amp circuit, toggle, 40' #14/2 NM     | EA   | 57.00    | 83.50  | 140.50   | 199.00   | 1        | 199   |  |
| GFCI 15-amp, 1-pole breaker              | EA   | 41.99    |        | 41.99    | 46.19    | 1        | 46    |  |
| Total to Builder                         |      |          |        |          |          |          | 939   |  |
| Total to Consumer                        |      |          |        |          |          |          | 1,117 |  |
| Houston                                  |      |          |        |          |          | 0.99     | 1,106 |  |
| Baltimore 1.02                           |      |          |        |          |          |          |       |  |
| <b>Denver</b> 1.05                       |      |          |        |          |          |          |       |  |
| Minneapolis                              |      |          |        |          |          | 1.00     | 1,117 |  |

### Substitute tankless gas direct vent condensing water heater, 0.93 UEF

#### Substitute 96% AFUE gas furnace

| Component                                | Unit           | Material | Labor | Total    | w/O&P    | Quantity | Cost  |  |
|------------------------------------------|----------------|----------|-------|----------|----------|----------|-------|--|
| Gas furnace, 80kBtuh, AFUE 80%           | EA             | 761.00   |       | 761.00   | 837.10   | (1)      | (837) |  |
| Gas Chimney Vent, 4" dia.                | LF             | 9.35     | 8.30  | 17.65    | 24.00    | (35)     | (840) |  |
| Gas Chimney Vent, 3" dia. (water heater) | LF             | 7.60     | 7.85  | 15.45    | 21.50    | 35       | 753   |  |
| Gas furnace, 80kBtuh, AFUE 96%           | EA             | 1,295.00 |       | 1,295.00 | 1,424.50 | 1        | 1,425 |  |
| Vent piping, PVC, 2" dia.                | LF             | 3.45     | 2.97  | 6.42     | 8.65     | 40       | 346   |  |
| 2" concentric vent kit                   | EA             | 59.95    |       | 59.95    | 65.95    | 1        | 66    |  |
| Total to Builder                         |                |          |       |          |          |          | 912   |  |
| Total to Consumer                        |                |          |       |          |          |          | 1,084 |  |
| Baltimore                                | Baltimore 1.02 |          |       |          |          |          |       |  |
| <b>Denver</b> 1.05                       |                |          |       |          |          |          |       |  |
| Minneapolis 1.00                         |                |          |       |          |          |          |       |  |

#### Substitute 96% AFUE gas furnace adjusted for Houston

| Component                                | Unit | Material | Labor | Total    | w/O&P    | Quantity | Cost  |  |
|------------------------------------------|------|----------|-------|----------|----------|----------|-------|--|
| Gas furnace, 80kBtuh, AFUE 80%           | EA   | 761.00   |       | 761.00   | 837.10   | (1)      | (837) |  |
| Gas Chimney Vent, 4" dia.                | LF   | 9.35     | 8.30  | 17.65    | 24.00    | (10)     | (240) |  |
| Gas Chimney Vent, 3" dia. (water heater) | LF   | 7.60     | 7.85  | 15.45    | 21.50    | 10       | 215   |  |
| Gas furnace, 80kBtuh, AFUE 96%           | EA   | 1,295.00 |       | 1,295.00 | 1,424.50 | 1        | 1,425 |  |
| Vent piping, PVC, 2" dia.                | LF   | 3.45     | 2.97  | 6.42     | 8.65     | 40       | 346   |  |
| 2" concentric vent kit                   | EA   | 59.95    |       | 59.95    | 65.95    | 1        | 66    |  |
| Total to Builder                         |      |          |       |          |          |          | 974   |  |
| Total to Consumer                        |      |          |       |          |          |          |       |  |
| Houston                                  |      |          |       |          |          | 0.99     | 1,147 |  |

| Component                                   | Unit                                             | Material | Labor | Total    | w/O&P    | Quantity | Cost    |  |  |  |
|---------------------------------------------|--------------------------------------------------|----------|-------|----------|----------|----------|---------|--|--|--|
| Gas furnace, 80kBtuh, AFUE 80%              | EA                                               | 761.00   |       | 761.00   | 837.10   | (1)      | (837)   |  |  |  |
| Gas Chimney Vent, 4" dia.                   | LF                                               | 9.35     | 8.30  | 17.65    | 24.00    | (35)     | (840)   |  |  |  |
| Gas Chimney Vent, 3" dia. (water heater)    | LF                                               | 7.60     | 7.85  | 15.45    | 21.50    | 35       | 753     |  |  |  |
| Gas furnace, 80kBtuh, AFUE 96%              | EA                                               | 1,295.00 |       | 1,295.00 | 1,424.50 | 1        | 1,425   |  |  |  |
| Vent piping, PVC, 2" dia.                   | LF                                               | 3.45     | 2.97  | 6.42     | 8.65     | 40       | 346     |  |  |  |
| 2" concentric vent kit                      | EA                                               | 59.95    |       | 59.95    | 65.95    | 1        | 66      |  |  |  |
| Condenser, 3 ton, 13 SEER                   | EA                                               | 1,085.00 |       | 1,085.00 | 1,193.50 | (1)      | (1,194) |  |  |  |
| Condenser, 3 ton, 16 SEER                   | EA                                               | 1,346.00 |       | 1,346.00 | 1,480.60 | 1        | 1,481   |  |  |  |
| Total to Builder                            |                                                  |          |       |          |          |          | 1,199   |  |  |  |
| Total to Consumer                           |                                                  |          |       |          |          |          | 1,426   |  |  |  |
| Baltimore (adjusted for 14 SEER to 16 SEER) | Baltimore (adjusted for 14 SEER to 16 SEER) 1.02 |          |       |          |          |          |         |  |  |  |
| <b>Denver</b> 1.05                          |                                                  |          |       |          |          |          |         |  |  |  |
| Minneapolis                                 |                                                  |          |       |          |          | 1.00     | 1,426   |  |  |  |

### Substitute 96% AFUE gas furnace and 16 SEER air conditioner adjusted for Houston

| Component                                | Unit | Material | Labor | Total    | w/O&P    | Quantity | Cost    |  |
|------------------------------------------|------|----------|-------|----------|----------|----------|---------|--|
| Gas furnace, 80kBtuh, AFUE 80%           | EA   | 761.00   |       | 761.00   | 837.10   | (1)      | (837)   |  |
| Gas Chimney Vent, 4" dia.                | LF   | 9.35     | 8.30  | 17.65    | 24.00    | (10)     | (240)   |  |
| Gas Chimney Vent, 3" dia. (water heater) | LF   | 7.60     | 7.85  | 15.45    | 21.50    | 10       | 215     |  |
| Gas furnace, 80kBtuh, AFUE 96%           | EA   | 1,295.00 |       | 1,295.00 | 1,424.50 | 1        | 1,425   |  |
| Vent piping, PVC, 2" dia.                | LF   | 3.45     | 2.97  | 6.42     | 8.65     | 40       | 346     |  |
| 2" concentric vent kit                   | EA   | 59.95    |       | 59.95    | 65.95    | 1        | 66      |  |
| Condenser, 3 ton, 14 SEER                | EA   | 1,215.00 |       | 1,215.00 | 1,336.50 | (1)      | (1,337) |  |
| Condenser, 3 ton, 16 SEER                | EA   | 1,346.00 |       | 1,346.00 | 1,480.60 | 1        | 1,481   |  |
| Total to Builder                         |      |          |       |          |          |          | 1,118   |  |
| Total to Consumer                        |      |          |       |          |          |          |         |  |
| Houston                                  |      |          |       |          |          | 0.99     | 1,317   |  |

### Substitute 97% AFUE modulating gas furnace and 16 SEER air conditioner

| Component                                        | Unit | Material | Labor | Total    | w/O&P    | Quantity | Cost    |  |  |
|--------------------------------------------------|------|----------|-------|----------|----------|----------|---------|--|--|
| Gas furnace, 80kBtuh, AFUE 80%                   | EA   | 761.00   |       | 761.00   | 837.10   | (1)      | (837)   |  |  |
| Gas Chimney Vent, 4" dia.                        | LF   | 9.35     | 8.30  | 17.65    | 24.00    | (35)     | (840)   |  |  |
| Gas Chimney Vent, 3" dia. (water heater)         | LF   | 7.60     | 7.85  | 15.45    | 21.50    | 35       | 753     |  |  |
| Gas furnace, 80kBtuh, AFUE 97                    | EA   | 2,106.00 |       | 2,106.00 | 2,316.60 | 1        | 2,317   |  |  |
| Vent piping, PVC, 2" dia.                        | LF   | 3.45     | 2.97  | 6.42     | 8.65     | 40       | 346     |  |  |
| 2" concentric vent kit                           | EA   | 59.95    |       | 59.95    | 65.95    | 1        | 66      |  |  |
| Condenser, 3 ton, 13 SEER                        | EA   | 1,085.00 |       | 1,085.00 | 1,193.50 | (1)      | (1,194) |  |  |
| Condenser, 3 ton, 16 SEER                        | EA   | 1,346.00 |       | 1,346.00 | 1,480.60 | 1        | 1,481   |  |  |
| Total to Builder                                 |      |          |       |          |          |          | 2,091   |  |  |
| Total to Consumer                                |      |          |       |          |          |          | 2,486   |  |  |
| Baltimore (adjusted for 14 SEER to 16 SEER) 1.02 |      |          |       |          |          |          |         |  |  |
| <b>Denver</b> 1.05                               |      |          |       |          |          |          |         |  |  |
| Minneapolis                                      |      |          |       |          |          | 1.00     | 2,486   |  |  |

| Component                                | Unit | Material | Labor | Total    | w/O&P    | Quantity | Cost    |  |
|------------------------------------------|------|----------|-------|----------|----------|----------|---------|--|
| Gas furnace, 80kBtuh, AFUE 80%           | EA   | 761.00   |       | 761.00   | 837.10   | (1)      | (837)   |  |
| Gas Chimney Vent, 4" dia.                | LF   | 9.35     | 8.30  | 17.65    | 24.00    | (10)     | (240)   |  |
| Gas Chimney Vent, 3" dia. (water heater) | LF   | 7.60     | 7.85  | 15.45    | 21.50    | 10       | 215     |  |
| Gas furnace, 80kBtuh, AFUE 96%           | EA   | 2,106.00 |       | 2,106.00 | 2,316.60 | 1        | 2,317   |  |
| Vent piping, PVC, 2" dia.                | LF   | 3.45     | 2.97  | 6.42     | 8.65     | 40       | 346     |  |
| 2" concentric vent kit                   | EA   | 59.95    |       | 59.95    | 65.95    | 1        | 66      |  |
| Condenser, 3 ton, 14 SEER                | EA   | 1,215.00 |       | 1,215.00 | 1,336.50 | (1)      | (1,337) |  |
| Condenser, 3 ton, 16 SEER                | EA   | 1,346.00 |       | 1,346.00 | 1,480.60 | 1        | 1,481   |  |
| Total to Builder                         |      |          |       |          |          |          | 2,011   |  |
| Total to Consumer                        |      |          |       |          |          |          |         |  |
| Houston                                  |      |          |       |          |          | 0.99     | 2,367   |  |

### Substitute 97% AFUE modulating gas furnace and 16 SEER air conditioner adjusted for Houston

#### Adjustment for installing a gas tankless water heater <u>AND</u> a 90+ AFUE furnace

| Component                           | Unit           | Material | Labor | Total | w/O&P | Quantity | Cost    |  |
|-------------------------------------|----------------|----------|-------|-------|-------|----------|---------|--|
| Gas Chimney Vent, 4" dia. (furnace) | LF             | 9.35     | 8.30  | 17.65 | 24.00 | (35)     | (840)   |  |
| Total to Builder                    |                |          |       |       |       |          |         |  |
| Total to Consumer                   |                |          |       |       |       |          |         |  |
| Baltimore                           | Baltimore 1.02 |          |       |       |       |          |         |  |
| Denver                              |                |          |       |       |       | 1.05     | (1,049) |  |
| Minneapolis                         |                |          |       |       |       | 1.00     | (999)   |  |

#### Adjustment for installing a gas tankless water heater <u>AND</u> a 90+ AFUE furnace for Houston

| Component                           | Unit | Material | Labor | Total | w/O&P | Quantity | Cost  |  |
|-------------------------------------|------|----------|-------|-------|-------|----------|-------|--|
| Gas Chimney Vent, 4" dia. (furnace) | LF   | 9.35     | 8.30  | 17.65 | 24.00 | (10)     | (240) |  |
| Total to Builder                    |      |          |       |       |       |          |       |  |
| Total to Consumer                   |      |          |       |       |       |          | (285) |  |
| Houston                             |      |          |       |       |       | 0.99     | (283) |  |

### **Electric Minimum Efficiency House**

| Component                                        | Unit   | Material | Labor  | Total    | w/O&P             | Quantity | Cost   |  |  |
|--------------------------------------------------|--------|----------|--------|----------|-------------------|----------|--------|--|--|
| Heat Pump, 3-ton, 14 SEER 8.2 HSPF               | EA     | 1,629.00 | 527.50 | 2,156.50 | 2 <i>,</i> 650.67 | 1        | 2,651  |  |  |
| Air Handler, matching                            | EA     | 988.00   | 195.00 | 1,183.00 | 1,404.26          | 1        | 1,404  |  |  |
| Air Handler electric heat, 15 kW                 | EA     | 164.00   | 42.00  | 206.00   | 248.78            | 1        | 249    |  |  |
| Water Heater, 50 gal elec                        | EA     | 419.00   | 162.00 | 581.00   | 728.20            | 1        | 728    |  |  |
| Heat Pump circuits: 40A & 100A breakers,         |        |          |        |          |                   |          |        |  |  |
| disconnects, 40' #8/2 & 30' #3/2 NM              | EA     | 520.00   | 257.00 | 777.00   | 995.00            | 1        | 995    |  |  |
| Wire, add 30' #3/2 NM (AH)                       | LF     | 3.20     | 3.18   | 6.38     | 8.70              | 30       | 261    |  |  |
| GFCI 30-amp 2-pole breaker (HP & AH)             | EA     | 124.99   |        | 124.99   | 137.49            | 2        | 275    |  |  |
| Standard 30/40-amp 2-pole breaker (HP)           | EA     | 10.65    |        | 10.65    | 11.72             | (1)      | (12)   |  |  |
| GFCI 50/60-amp 2-pole breaker (AH)               | EA     | 149.00   |        | 149.00   | 163.90            | 1        | 164    |  |  |
| Water Heater circuit: breaker, disconnect, 20'   |        |          |        |          |                   |          |        |  |  |
| #10/2 NM                                         | EA     | 29.00    | 66.50  | 95.50    | 141.00            | 1        | 141    |  |  |
| Wire, add 40' #10/2 NM (WH)                      | LF     | 0.45     | 1.67   | 2.12     | 3.20              | 40       | 128    |  |  |
| GFCI 30-amp 2-pole breaker (WH)                  | EA     | 124.99   |        | 124.99   | 137.49            | 1        | 137    |  |  |
| Standard 30/40-amp 2-pole breaker (WH)           | EA     | 10.65    |        | 10.65    | 11.72             | (1)      | (12)   |  |  |
| Range circuit, 50-amp recep., 30' #8/3 NM        | EA     | 82.50    | 79.00  | 161.50   | 220.00            | 1        | 220    |  |  |
| Wire, add 30' #8/3 NM (range)                    | LF     | 1.17     | 2.57   | 3.74     | 5.45              | 30       | 164    |  |  |
| GFCI 50/60-amp 2-pole breaker (range)            | EA     | 149.00   |        | 149.00   | 163.90            | 1        | 164    |  |  |
| Dryer circuit: 30-amp recep., breaker, 20' #10/3 |        |          |        |          |                   |          |        |  |  |
| NM                                               | EA     | 54.50    | 52.00  | 106.50   | 145.00            | 1        | 145    |  |  |
| Wire, add 40' #10/3 NM (dryer)                   | LF     | 0.66     | 2.38   | 3.04     | 4.61              | 40       | 184    |  |  |
| GFCI 30-amp 2-pole breaker (dryer)               | EA     | 124.99   |        | 124.99   | 137.49            | 1        | 137    |  |  |
| Standard 30/40-amp 2-pole breaker (dryer)        | EA     | 10.65    |        | 10.65    | 11.72             | (1)      | (12)   |  |  |
| Electric Range, 30", freestanding, min.          | EA     | 529.00   | 44.50  | 573.50   | 655.33            | 1        | 655    |  |  |
| Electric Dryer, front load, energy-star, min.    | EA     | 428.00   | 170.00 | 598.00   | 751.30            | 1        | 751    |  |  |
| Total to Builder                                 |        |          |        |          |                   |          | 9,519  |  |  |
| Total to Consumer                                |        | 11,318   |        |          |                   |          |        |  |  |
| Houston                                          |        |          |        |          |                   |          |        |  |  |
| Baltimore                                        | 1.02   | 11,545   |        |          |                   |          |        |  |  |
| Denver                                           | Denver |          |        |          |                   |          |        |  |  |
| Minneapolis                                      |        |          |        |          |                   | 1.00     | 11,318 |  |  |

### Substitute 50-gallon heat pump water heater, 3.25 UEF

| Component                                | Unit | Material | Labor  | Total    | w/O&P    | Quantity | Cost  |  |
|------------------------------------------|------|----------|--------|----------|----------|----------|-------|--|
| 50 gal electric water heater             | EA   | 419.00   | 162.00 | 581.00   | 728.20   | (1)      | (728) |  |
| Heat pump water heater, 50 gal, 3.25 UEF | EA   | 1,199.00 | 162.00 | 1,361.00 | 1,586.20 | 1        | 1,586 |  |
| Mixing valve                             | EA   | 167      | 16.25  | 183.25   | 210      | 1        | 210   |  |
| Total to Builder                         |      |          |        |          |          |          |       |  |
| Total to Consumer                        |      |          |        |          |          |          | 1,270 |  |
| Houston                                  |      |          |        |          |          | 0.99     | 1,257 |  |
| Baltimore                                |      |          |        |          |          | 1.02     | 1,295 |  |
| <b>Denver</b> 1.05                       |      |          |        |          |          |          |       |  |
| Minneapolis                              |      |          |        |          |          | 1.00     | 1,270 |  |

### Substitute 80-gallon heat pump water heater, 3.25 UEF

| Component                                | Unit              | Material | Labor  | Total    | w/O&P    | Quantity | Cost  |  |
|------------------------------------------|-------------------|----------|--------|----------|----------|----------|-------|--|
| 50 gal electric water heater             | EA                | 419.00   | 162.00 | 581.00   | 728.20   | (1)      | (728) |  |
| Heat pump water heater, 80 gal, 3.25 UEF | EA                | 1,999.00 | 203.00 | 2,202.00 | 2,533.85 | 1        | 2,534 |  |
| Mixing valve                             | EA                | 167      | 16.25  | 183.25   | 210      | 1        | 210   |  |
| Total to Builder                         |                   |          |        |          |          |          |       |  |
| Total to Consumer                        | Total to Consumer |          |        |          |          |          |       |  |
| Houston                                  |                   |          |        |          |          | 0.99     | 2,373 |  |
| Baltimore                                |                   |          |        |          |          | 1.02     | 2,445 |  |
| <b>Denver</b> 1.05                       |                   |          |        |          |          |          | 2,516 |  |
| Minneapolis                              |                   |          |        |          |          | 1.00     | 2,397 |  |

### Substitute 80-gallon heat pump water heater, 3.75 UEF

| Component                                | Unit           | Material | Labor  | Total    | w/O&P    | Quantity | Cost           |  |
|------------------------------------------|----------------|----------|--------|----------|----------|----------|----------------|--|
| 50 gal electric water heater             | EA             | 419.00   | 162.00 | 581.00   | 728.20   | (1)      | (728)          |  |
| Heat pump water heater, 80 gal, 3.75 UEF | EA             | 2,199.00 | 203.00 | 2,402.00 | 2,753.85 | 1        | 2,754          |  |
| Mixing valve                             | EA             | 167      | 16.25  | 183.25   | 210      | 1        | 210            |  |
| Total to Builder                         |                |          |        |          |          |          |                |  |
| Total to Consumer                        |                |          |        |          |          |          |                |  |
| Houston                                  |                |          |        |          |          | 0.99     | 2,632          |  |
| Baltimore                                | Baltimore 1.02 |          |        |          |          |          |                |  |
| <b>Denver</b> 1.05                       |                |          |        |          |          |          |                |  |
| Minneapolis                              |                |          |        |          |          | 1.00     | 2 <i>,</i> 658 |  |

### Substitute heat pump system with two-stage compressor, 18 SEER, 9.3 HSPF

| Component                          | Unit | Material | Labor | Total    | w/O&P    | Quantity | Cost    |
|------------------------------------|------|----------|-------|----------|----------|----------|---------|
| Heat Pump, 14 SEER 8.2 HSPF        | EA   | 1,629.00 |       | 1,629.00 | 1,791.90 | (1)      | (1,792) |
| Air Handler, matching              | EA   | 988.00   |       | 988.00   | 1,086.80 | (1)      | (1,087) |
| Heat Pump 2-stage 18 SEER 9.3 HSPF | EA   | 2,994.00 |       | 2,994.00 | 3,293.40 | 1        | 3,293   |
| Air Handler, matching              | EA   | 1,199.00 |       | 1,199.00 | 1,318.90 | 1        | 1,319   |
| Total to Builder                   |      |          |       |          |          |          |         |
| Total to Consumer                  |      |          |       |          |          |          | 2,061   |
| Houston                            |      |          |       |          |          | 0.99     | 2,041   |
| Baltimore 1.02                     |      |          |       |          |          |          |         |
| <b>Denver</b> 1.05                 |      |          |       |          |          |          | 2,164   |
| Minneapolis 1.00                   |      |          |       |          |          |          |         |

| Component                                     | Unit | Material | Labor | Total             | w/O&P    | Quantity | Cost           |
|-----------------------------------------------|------|----------|-------|-------------------|----------|----------|----------------|
| Heat Pump, 14 SEER 8.2 HSPF                   | EA   | 1,629.00 |       | 1,629.00          | 1,791.90 | (1)      | (1,792)        |
| Air Handler, matching                         | EA   | 988.00   |       | 988.00            | 1,086.80 | (1)      | (1,087)        |
| Heat Pump inverter system, rated down to 7°F, |      |          |       |                   |          |          |                |
| 19 SEER 10 HSPF                               | EA   | 6,830.00 |       | 6 <i>,</i> 830.00 | 7,513.00 | 1        | 7,513          |
| Total to Builder                              |      |          |       |                   |          |          |                |
| Total to Consumer                             |      |          |       |                   |          |          | 5,510          |
| Houston                                       |      |          |       |                   |          | 0.99     | 5 <i>,</i> 455 |
| Baltimore 1.02                                |      |          |       |                   |          |          | 5,620          |
| <b>Denver</b> 1.05                            |      |          |       |                   |          |          | 5,786          |
| Minneapolis                                   |      |          |       |                   |          | 1.00     | 5,510          |

#### Substitute heat pump system with variable speed inverter compressor, rated to 7°F, 19 SEER, 10 HSPF

#### Substitute heat pump system with variable speed inverter compressor, rated to -13°F, 19 SEER, 10 HSPF

| Component                                  | Unit | Material | Labor | Total    | w/O&P    | Quantity | Cost           |
|--------------------------------------------|------|----------|-------|----------|----------|----------|----------------|
| Heat Pump, 14 SEER 8.2 HSPF                | EA   | 1,629.00 |       | 1,629.00 | 1,791.90 | (1)      | (1,792)        |
| Air Handler, matching                      | EA   | 988.00   |       | 988.00   | 1,086.80 | (1)      | (1,087)        |
| Heat Pump inverter system, rated down to - |      |          |       |          |          |          |                |
| 13°F, 19 SEER 10 HSPF                      | EA   | 8,652.00 |       | 8,652.00 | 9,517.20 | 1        | 9,517          |
| Total to Builder                           |      |          |       |          |          |          |                |
| Total to Consumer                          |      |          |       |          |          |          | 7 <i>,</i> 893 |
| Houston                                    |      |          |       |          |          | 0.99     | 7,814          |
| Baltimore 1.02                             |      |          |       |          |          |          | 8,051          |
| Denver 1.05                                |      |          |       |          |          |          | 8,288          |
| Minneapolis 1.00                           |      |          |       |          |          |          |                |

### Substitute heat pump system with variable speed inverter compressor, 20 SEER, 13 HSPF

| Component                              | Unit | Material | Labor | Total    | w/O&P    | Quantity | Cost    |
|----------------------------------------|------|----------|-------|----------|----------|----------|---------|
| Heat Pump 3-ton 14 SEER 8.2 HSPF       | EA   | 1,629.00 |       | 1,629.00 | 1,791.90 | (1)      | (1,792) |
| Air Handler, matching                  | EA   | 988.00   |       | 988.00   | 1,086.80 | (1)      | (1,087) |
| Heat Pump system 20 SEER 13 HSPF, est. | EA   | 8,700.00 |       | 8,700.00 | 9,570.00 | 1        | 9,570   |
| Heat Pump required controller, est.    | EA   | 500.00   |       | 500.00   | 550.00   | 1        | 550     |
| Total to Builder                       |      |          |       |          |          |          |         |
| Total to Consumer                      |      |          |       |          |          |          | 8,610   |
| Houston                                |      |          |       |          |          | 0.99     | 8,524   |
| Baltimore 1.02                         |      |          |       |          |          |          | 8,782   |
| <b>Denver</b> 1.05                     |      |          |       |          |          |          | 9,040   |
| Minneapolis 1.00                       |      |          |       |          |          |          |         |

### Construction Cost for Electric Vehicle (EV) Charger Circuit

| Component                                     | Unit | Material | Labor                                 | Total | w/O&P  | Quantity | Cost |
|-----------------------------------------------|------|----------|---------------------------------------|-------|--------|----------|------|
| 40-amp circuit, breaker, disconnect, 40' #8/2 | EA   | 144.00   | 95.50                                 |       | 315.00 | 1        | 315  |
| GFCI 40-amp 2-pole breaker                    | EA   | 124.99   |                                       |       | 137.49 | 1        | 137  |
| Standard 40-amp 2-pole breaker                | EA   | 10.87    |                                       |       | 11.96  | (1)      | (12) |
| Receptacle, NEMA 6-50                         | EA   | 13.34    |                                       |       | 14.67  | 1        | 15   |
| Weatherproof while-in-use cover               | EA   | 12.98    |                                       |       | 14.28  | 1        | 14   |
| Wire, #8/2, additional                        | LF   | 1.17     | 2.57                                  |       | 5.45   | 10       | 55   |
| Total to Builder                              |      |          | · · · · · · · · · · · · · · · · · · · |       |        |          | 524  |
| Total to Consumer                             |      |          |                                       |       |        |          | 623  |
| Houston                                       |      |          |                                       |       |        | 0.99     | 617  |
| Baltimore                                     |      |          |                                       |       |        | 1.02     | 635  |
| Denver                                        |      |          |                                       |       |        | 1.05     | 654  |
| Minneapolis                                   |      |          |                                       |       |        | 1.00     | 623  |

# Construction Cost for Adding a 100-amp Electric Panel

| Component                                  | Unit | Material | Labor  | Total  | w/O&P  | Quantity | Cost |
|--------------------------------------------|------|----------|--------|--------|--------|----------|------|
| 100-amp load center with 8 1-pole breakers | EA   | 164.00   | 244.00 | 408.00 | 575.00 | 1        | 575  |
| 15/20-amp 1-pole breakers                  | EA   | 8.88     |        |        | 9.77   | (8)      | (78) |
| 100-amp 2-pole breaker                     | EA   | 86.50    | 57.00  | 143.50 | 188.00 | 1        | 188  |
| Total to Builder                           |      |          |        |        |        |          | 685  |
| Total to Consumer                          |      |          |        |        |        |          | 814  |
| Houston                                    |      |          |        |        |        | 0.99     | 806  |
| Baltimore                                  |      |          |        |        |        | 1.02     | 831  |
| Denver                                     |      |          |        |        |        | 1.05     | 855  |
| Minneapolis                                |      |          |        |        |        | 1.00     | 814  |

### Construction Cost to Substitute an Electric Range with an Induction Cooktop

| Component                              | Unit           | Material | Labor | Total    | w/O&P    | Quantity | Cost  |
|----------------------------------------|----------------|----------|-------|----------|----------|----------|-------|
| Electric Range, standard               | EA             | 529.00   |       | 529.00   | 581.90   | (1)      | (582) |
| Electric Range, with induction cooktop | EA             | 1,299.00 |       | 1,299.00 | 1,428.90 | 1        | 1,429 |
| Total to Remodeler                     |                |          |       |          |          |          |       |
| Total to Consumer                      |                |          |       |          |          |          |       |
| Houston                                |                |          |       |          |          | 0.99     | 997   |
| Baltimore                              | Baltimore 1.02 |          |       |          |          |          |       |
| <b>Denver</b> 1.05                     |                |          |       |          |          |          | 1,057 |
| Minneapolis 1.00                       |                |          |       |          |          |          | 1,007 |

| Component                                    | Unit | Material | Labor  | Total    | w/O&P    | Quantity | Cost    |
|----------------------------------------------|------|----------|--------|----------|----------|----------|---------|
| Heat Pump, 3-ton, SEER 14                    | EA   | 1,629.00 | 527.50 | 2,156.50 | 2,650.67 | (1)      | (2,651) |
| Air Handler, 3-ton coil                      | EA   | 988.00   | 195.00 | 1,183.00 | 1,404.26 | (1)      | (1,404) |
| Air Handler electric heat, 15 kW             | EA   | 164.00   | 42.00  | 206.00   | 248.78   | (1)      | (249)   |
| Refrigerant piping                           | EA   | 204.00   | 21.50  | 225.50   | 261.00   | (1)      | (261)   |
| Duct distribution system, all metal          | LB   | 0.54     | 3.45   | 3.99     | 6.30     | (702)    | (4,423) |
| Registers                                    | EA   | 17.20    | 12.10  | 29.30    | 39.00    | (16)     | (624)   |
| Grilles                                      | EA   | 43.50    | 17.45  | 60.95    | 77.00    | (3)      | (231)   |
| Ductless 4-zone system 19 SEER 11 HSPF       | EA   | 5,644.00 |        | 5,644.00 | 6,208.40 | 1        | 6,208   |
| Ductless 2-zone system                       | EA   | 4,466.00 |        | 4,466.00 | 4,912.60 | 1        | 4,913   |
| Ductless, installation                       | EA   | 50.00    | 355.00 | 405.00   | 632.94   | 6        | 3,798   |
| Ductless refrigerant piping/wiring kit       | EA   | 279.50   | 30.00  | 309.50   | 356.29   | 6        | 2,138   |
| Condensate piping, 3/4 PVC                   | LF   | 1.30     | 2.54   | 3.84     | 5.60     | 120      | 672     |
| Heat Pump circuits: 40A & 100A breakers,     |      |          |        |          |          |          |         |
| disconnects, 40' #8/2 & 30' #3/2 NM          | EA   | 520.00   | 257.00 | 777.00   | 995.00   | (1)      | (995)   |
| Wire, add 30' #3/2 NM (AH)                   | LF   | 3.20     | 3.18   | 6.38     | 8.70     | (30)     | (261)   |
| GFCI 30-amp 2-pole breaker (HP & AH)         | EA   | 124.99   |        | 124.99   | 137.49   | (2)      | (275)   |
| Standard 30/40-amp 2-pole breaker (HP)       | EA   | 10.65    |        | 10.65    | 11.72    | 1        | 12      |
| GFCI 50/60-amp 2-pole breaker (AH)           | EA   | 149.00   |        | 149.00   | 163.90   | (1)      | (164)   |
| Condenser circuit: disconnect, 40-amp 2-pole |      |          |        |          |          |          |         |
| breaker, 40' #8/2 NM                         | EA   | 144.00   | 95.50  | 239.50   | 315.00   | 2        | 630     |
| GFCI 30/40amp 2-pole breaker                 | EA   | 124.99   |        | 124.99   | 137.49   | 2        | 275     |
| Standard 30/40-amp 2-pole breaker            | EA   | 10.65    |        | 10.65    | 11.72    | (2)      | (23)    |
| Wire, add #8/2 NM for HP                     | LF   | 1.17     | 2.57   | 3.74     | 5.45     | 40       | 218     |
|                                              | LF   |          |        |          |          |          |         |
| Total to Builder                             |      |          |        |          |          |          |         |
| Total to Consumer                            |      |          |        |          |          |          |         |
| Houston                                      |      |          |        |          |          | 0        | 0       |
| Baltimore                                    |      |          |        |          |          | 1.02     | 8,856   |
| Denver                                       |      |          |        |          |          | 1.05     | 9,117   |
| Minneapolis                                  |      |          |        |          |          | 1.00     | 8,683   |

# Substitute ductless cold climate heat pump for Climate Zones 4-6: 6-head system (4 on second floor, 1 on first floor, 1 in basement), 19 SEER 11 HSPF

| Component                              | Unit | Material | Labor  | Total    | w/O&P    | Quantity | Cost    |
|----------------------------------------|------|----------|--------|----------|----------|----------|---------|
| Total to builder cost from above       |      |          |        |          |          |          | 7,302   |
| Ducts, all metal                       | LB   | 0.54     | 3.45   | 3.99     | 6.30     | 702      | 4,423   |
| Duct board plenums & junction boxes    | SF   | 3.82     | 4.43   | 8.25     | 11.65    | (54)     | (629)   |
| Supply branch flex duct                | LF   | 3.61     | 2.17   | 5.78     | 7.55     | (300)    | (2,265) |
| Supply & return trunk flex duct        | LF   | 6.05     | 5.65   | 11.70    | 16.05    | (70)     | (1,124) |
| Ductless 4-zone cold climate           | EA   | 5,644.00 |        | 5,644.00 | 6,208.40 | (1)      | (6,208) |
| Ductless 4-zone                        | EA   | 4,772.00 |        | 4,772.00 | 5,249.20 | 1        | 5,249   |
| Ductless 2-zone cold climate           | EA   | 4,466.00 |        | 4,466.00 | 4,912.60 | (1)      | (4,913) |
| Ductless 1-zone                        | EA   | 2,289.00 |        | 2,289.00 | 2,517.90 | 1        | 2,518   |
| Ductless, labor, 3/4 ton wall mount    | EA   | 50.00    | 355.00 | 405.00   | 632.94   | (1)      | (633)   |
| Ductless refrigerant piping/wiring kit | EA   | 279.50   | 30.00  | 309.50   | 356.29   | (1)      | (356)   |
| Condensate piping, 3/4 PVC             | LF   | 1.30     | 2.54   | 3.84     | 5.60     | (10)     | (56)    |
| Total to Builder                       |      |          |        |          |          |          |         |
| Total to Consumer                      |      |          |        |          |          |          | 3,934   |
| Houston 0.99                           |      |          |        |          |          |          | 3,894   |

# Substitute ductless heat pump for Climate Zone 2 (slab-on-grade foundation): 5-head system (4 on second floor, 1 on first floor), 19 SEER 11 HSPF

### INTENTIONALLY LEFT BLANK

| APPENDIX | <b>B: ELECTRIF</b> | <b>ICATION RE</b> | ETROFIT COSTS |
|----------|--------------------|-------------------|---------------|
|----------|--------------------|-------------------|---------------|

#### Retrofit Cost of Electrification for an Existing Gas Baseline House – Climate Zones 2 & 4

| Component                                         | Unit | Material | Labor  | Total    | w/O&P    | Quantity | Cost   |
|---------------------------------------------------|------|----------|--------|----------|----------|----------|--------|
| Demo gas furnace                                  | EA   |          | 141.00 | 141.00   | 234.00   | 1        | 234    |
| Demo condenser & coil                             | EA   |          | 300.00 | 300.00   | 495.00   | 1        | 495    |
| Remove refrigerant from system                    | LB   |          | 8.40   | 8.40     | 13.75    | 5        | 69     |
| Demo gas water heater                             | EA   |          | 124.00 | 124.00   | 204.00   | 1        | 204    |
| Heat Pump system 19 SEER 10 HSPF rated 7F         | EA   | 6,830.00 |        | 6,830.00 | 7,513.00 | 1        | 7,513  |
| Heat Pump, Labor                                  | EA   |          | 500.00 | 500.00   | 825.00   | 1        | 825    |
| Air Handler, Labor                                | EA   |          | 461.00 | 461.00   | 760.00   | 1        | 760    |
| Air Handler electric heat, 15 kW                  | EA   | 164.00   | 42.00  | 206.00   | 248.78   | 1        | 249    |
| Refrigerant piping                                | EA   | 204.00   | 21.50  | 225.50   | 261.00   | 1        | 261    |
| Heat pump misc materials, est.                    | EA   | 200.00   |        | 200.00   | 220.00   | 1        | 220    |
| Heat pump water heater, 80 gal, 3.75 UEF          | EA   | 2,199.00 |        | 2,199.00 | 2,418.90 | 1        | 2,419  |
| Heat pump water heater labor                      | EA   |          | 200.00 | 200.00   | 330.00   | 1        | 330    |
| Water heater, mixing valve                        | EA   | 167.00   | 16.25  | 183.25   | 210.00   | 1        | 210    |
| Water heater misc materials, est.                 | EA   | 100.00   |        | 100.00   | 110.00   | 1        | 110    |
| Heat pump/air handler circuits: 40A/100A          |      |          |        |          |          |          |        |
| breakers, disconnects, 40' #8/2, 30' #3/2 NM      | EA   | 520.00   | 257.00 | 777.00   | 995.00   | 1        | 995    |
| Condenser circuit: disconnect, 40-amp 2-pole      |      |          |        |          |          |          |        |
| breaker, 40' #8/2 NM                              | EA   | 144.00   | 95.50  | 239.50   | 315.00   | (1)      | (315)  |
| Air handler wire, add 30' #3/2 NM                 | LF   | 3.20     | 3.18   | 6.38     | 8.70     | 30       | 261    |
| Air handler GFCI 30-amp 2-pole breaker            | EA   | 124.99   |        | 124.99   | 137.49   | 1        | 137    |
| Air handler GFCI 50/60-amp 2-pole breaker         | EA   | 149.00   |        | 149.00   | 163.90   | 1        | 164    |
| Water Heater circuit: breaker, disconnect, 20'    |      |          |        |          |          |          |        |
| #10/2 NM                                          | EA   | 29.00    | 66.50  | 95.50    | 141.00   | 1        | 141    |
| Water heater wire, add 40' #10/2 NM               | LF   | 0.45     | 1.67   | 2.12     | 3.20     | 40       | 128    |
| Water heater GFCI 30-amp 2-pole breaker           | EA   | 124.99   |        | 124.99   | 137.49   | 1        | 137    |
| Water heater standard 30-amp 2-pole breaker       | EA   | 10.65    |        | 10.65    | 11.72    | (1)      | (12)   |
| Range circuit, 50-amp recep., 30' #8/3 NM         | EA   | 82.50    | 79.00  | 161.50   | 220.00   | 1        | 220    |
| Range, wire, add 30' #8/3 NM                      | LF   | 1.17     | 2.57   | 3.74     | 5.45     | 30       | 164    |
| Range GFCI 50/60-amp 2-pole breaker               | EA   | 149.00   |        | 149.00   | 163.90   | 1        | 164    |
| Dryer circuit: 30-amp recep., breaker, 20'        |      |          |        |          |          |          |        |
| #10/3 NM                                          | EA   | 54.50    | 52.00  | 106.50   | 145.00   | 1        | 145    |
| Dryer, wire, add 40' #10/3 NM                     | LF   | 0.66     | 2.38   | 3.04     | 4.61     | 40       | 184    |
| Dryer, GFCI 30-amp 2-pole breaker                 | EA   | 124.99   |        | 124.99   | 137.49   | 1        | 137    |
| Dryer, standard 30/40-amp 2-pole breaker          | EA   | 10.65    |        | 10.65    | 11.72    | (1)      | (12)   |
| Electric Range, 30", standard, remove/install     | EA   | 529.00   | 67.00  | 596.00   | 692.45   | 1        | 692    |
| Electric Dryer, standard, remove/install          | EA   | 428.00   | 181.00 | 609.00   | 769.45   | 1        | 769    |
| Drywall repair, 1 SF area patch, labor & material | EA   |          |        |          | 65.52    | 10       | 655.20 |
| Drywall paint, minimum charge                     | EA   |          |        |          | 197.00   | 1        | 197.00 |
| Total to Remodeler                                |      |          |        |          |          |          | 18,852 |
| Total to Consumer                                 |      |          |        |          |          |          | 24,527 |
| Houston 0.99                                      |      |          |        |          |          |          | 24,282 |
| Baltimore                                         |      |          |        |          |          | 1.02     | 25,017 |

| Component                                   | Unit | Material | Labor | Total    | w/O&P    | Quantity | Cost    |
|---------------------------------------------|------|----------|-------|----------|----------|----------|---------|
| Total to builder, from table above          |      |          |       |          |          |          | 18,852  |
| Heat Pump system 19 SEER 10 HSPF rated 7F   | EA   | 6,830.00 |       | 6,830.00 | 7,513.00 | (1)      | (7,513) |
| Heat Pump system 19 SEER 10 HSPF rated -13F | EA   | 8,652.00 |       | 8,652.00 | 9,517.20 | 1        | 9,517   |
| Total to Remodeler                          |      |          |       |          |          |          |         |
| Total to Consumer                           |      |          |       |          |          |          | 27,134  |
| <b>Denver</b> 1.05                          |      |          |       |          |          | 28,491   |         |
| Minneapolis 1.00                            |      |          |       |          |          | 27,134   |         |

### Retrofit Cost of Electrification for an Existing Gas Baseline House – Climate Zones 5 & 6

#### Retrofit Cost to Install an Electric Vehicle (EV) Charger Circuit

| Component                                         | Unit | Material | Labor | Total | w/O&P  | Quantity | Cost  |
|---------------------------------------------------|------|----------|-------|-------|--------|----------|-------|
| 40-amp circuit, breaker, disconnect, 40' #8/2     | EA   | 144.00   | 95.50 |       | 315.00 | 1        | 315   |
| GFCI 40-amp 2-pole breaker                        | EA   | 124.99   |       |       | 137.49 | 1        | 137   |
| Standard 40-amp 2-pole breaker                    | EA   | 10.87    |       |       | 11.96  | (1)      | (12)  |
| Receptacle, NEMA 6-50                             | EA   | 13.34    |       |       | 14.67  | 1        | 15    |
| Weatherproof while-in-use cover                   | EA   | 12.98    |       |       | 14.28  | 1        | 14    |
| Wire, #8/2, additional                            | LF   | 1.17     | 2.57  |       | 5.45   | 10       | 55    |
| Drywall repair, 1 SF area patch, labor & material | EA   |          |       |       | 65.52  | 4        | 262   |
| Drywall paint, minimum charge                     | EA   |          |       |       | 197.00 | 1        | 197   |
| Total to Remodeler                                |      |          |       |       |        |          | 983   |
| Total to Consumer                                 |      |          |       |       |        |          | 1,279 |
| Houston 0.99                                      |      |          |       |       |        |          |       |
| Baltimore 1.02                                    |      |          |       |       |        |          |       |
| <b>Denver</b> 1.05                                |      |          |       |       |        |          | 1,343 |
| Minneapolis 1.00                                  |      |          |       |       |        |          |       |

### Retrofit Incremental Cost to Substitute an Electric Range with Induction Cooktop

| Component                              | Unit         | Material | Labor | Total    | w/O&P    | Quantity | Cost  |  |
|----------------------------------------|--------------|----------|-------|----------|----------|----------|-------|--|
| Electric Range, standard               | EA           | 529.00   |       | 529.00   | 581.90   | (1)      | (582) |  |
| Electric Range, with induction cooktop | EA           | 1,299.00 |       | 1,299.00 | 1,428.90 | 1        | 1,429 |  |
| Total to Remodeler                     |              |          |       |          |          |          |       |  |
| Total to Consumer                      |              |          |       |          |          |          |       |  |
| Houston                                | Houston 0.99 |          |       |          |          |          |       |  |
| Baltimore 1.02                         |              |          |       |          |          |          | 1,124 |  |
| <b>Denver</b> 1.05                     |              |          |       |          |          |          | 1,157 |  |
| Minneapolis 1.00                       |              |          |       |          |          |          | 1,102 |  |

| Component                         | Unit | Material | Labor | Total    | w/O&P    | Quantity | Cost           |
|-----------------------------------|------|----------|-------|----------|----------|----------|----------------|
| Demo and Install GF, labor        | EA   | Wateria  | LUDOI | Total    | 377.00   | • /      | 377            |
| Demo and Install AC system, labor | EA   |          |       |          | 943.00   | 1        | 943            |
| Demo and Install WH, labor        | EA   |          |       |          | 499.00   | 1        | 499            |
| Reclaim old refrigerant           | LB   |          | 8.40  | 8.40     | 13.75    |          | 69             |
| Install new Refrigerant piping    | EA   | 204.00   | 21.50 | 225.50   | 261.00   |          | 261            |
| GF materials, est.                | EA   | 200.00   |       | 200.00   | 220.00   | 1        | 220            |
| AC materials, est.                | EA   | 200.00   |       | 200.00   | 220.00   | 1        | 220            |
| WH materials, est.                | EA   | 100.00   |       | 100.00   | 110.00   | 1        | 110            |
| 80 AFUE GF                        | EA   | 761.00   |       | 761.00   | 837.10   | 1        | 837            |
| 14 SEER AC                        | EA   | 1,215.00 |       | 1,215.00 | 1,336.50 | 1        | 1,337          |
| Coil                              | EA   | 439.00   |       | 439.00   | 482.90   | 1        | 483            |
| 50 gal gas 0.56 UEF WH            | EA   | 559.00   |       | 559.00   | 614.90   | 1        | 615            |
| Remove and install range, labor   | EA   |          |       |          | 138.00   | 1        | 138            |
| Remove and install dyer, labor    | EA   |          |       |          | 297.90   | 1        | 298            |
| Gas Range                         | EA   | 542.00   |       | 542.00   | 596.20   | 1        | 596            |
| Gas Dryer                         | EA   | 528.00   |       | 528.00   | 580.80   | 1        | 581            |
| Total to Remodeler                |      |          |       |          |          |          | 7 <i>,</i> 583 |
| Total to Consumer                 |      |          |       |          |          |          |                |
| Houston 0.99                      |      |          |       |          |          |          |                |
| Baltimore                         |      |          |       |          |          | 1.02     | 10,063         |
| Denver                            |      |          |       |          |          | 1.05     | 10,359         |
| Minneapolis                       |      |          |       |          |          | 1.00     | 9,866          |

### Retrofit Cost of Gas Equipment and Appliances for an Existing Gas Baseline House: 80 AFUE GF; 14 SEER AC; 50 gal 0.56 UEF WH

| So AFOE GF; 10 S                        | Unit | Material | Labor | Total    | w/O&P    | Quantity | Cost   |
|-----------------------------------------|------|----------|-------|----------|----------|----------|--------|
| Demo and Install GF, labor              | EA   |          |       |          | 377.00   | 1        | 377    |
| Demo and Install AC system, labor       | EA   |          |       |          | 943.00   | 1        | 943    |
| Demo and Install WH, labor              | EA   |          |       |          | 499.00   | 1        | 499    |
| Reclaim old refrigerant                 | LB   |          | 8.40  | 8.40     | 13.75    | 5        | 69     |
| Install new Refrigerant piping          | EA   | 204.00   | 21.50 | 225.50   | 261.00   | 1        | 261    |
| GF materials, est.                      | EA   | 200.00   |       | 200.00   | 220.00   | 1        | 220    |
| AC materials, est.                      | EA   | 200.00   |       | 200.00   | 220.00   | 1        | 220    |
| WH materials, est.                      | EA   | 100.00   |       | 100.00   | 110.00   | 1        | 110    |
| 96 AFUE GF                              | EA   | 1,295.00 |       | 1,295.00 | 1,424.50 | 1        | 1,425  |
| GF Vent piping, PVC, 2" dia.            | LF   | 3.45     | 2.97  | 6.42     | 8.65     | 40       | 346    |
| GF 2" concentric vent kit               | EA   | 59.95    |       | 59.95    | 65.95    | 1        | 66     |
| 16 SEER AC                              | EA   | 1,346.00 |       | 1,346.00 | 1,480.60 | 1        | 1,481  |
| Coil                                    | EA   | 439.00   |       | 439.00   | 482.90   | 1        | 483    |
| Tankless condensing 0.93 UEF WH         | EA   | 1,039.00 |       | 1,039.00 | 1,142.90 | 1        | 1,143  |
| WH Vent piping, PVC, 2" dia.            | LF   | 3.45     | 2.97  | 6.42     | 8.65     | 20       | 173    |
| WH 2" PVC concentric vent kit           | EA   | 22.49    |       | 22.49    | 24.74    | 1        | 25     |
| WH Gas piping, 1"                       | LF   | 7.80     | 6.15  | 13.95    | 18.60    | 7        | 130    |
| WH 15-amp circuit, toggle, 40' #14/2 NM | EA   | 57.00    | 83.50 | 140.50   | 199.00   | 1        | 199    |
| WH GFCI 15-amp, 1-pole breaker          | EA   | 41.99    |       | 41.99    | 46.19    | 1        | 46     |
| Remove and install range, labor         | EA   |          |       |          | 138.00   | 1        | 138    |
| Remove and install dyer, labor          | EA   |          |       |          | 297.90   | 1        | 298    |
| Gas Range                               | EA   | 542.00   |       | 542.00   | 596.20   | 1        | 596    |
| Gas Dryer                               | EA   | 528.00   |       | 528.00   | 580.80   | 1        | 581    |
| Total to Remodeler                      |      |          |       |          |          |          |        |
| Total to Consumer                       |      |          |       |          |          |          |        |
| Houston 0.99                            |      |          |       |          |          |          |        |
| Baltimore 1.02                          |      |          |       |          |          |          | 13,041 |
| Denver                                  |      |          |       |          |          | 1.05     | 13,425 |
| Minneapolis                             |      |          |       |          |          | 1.00     | 12,786 |

### Retrofit Cost of Gas Equipment and Appliances for an Existing Gas Baseline House: 96 AFUE GF; 16 SEER AC; Tankless Condensing 0.93 UEF WH

| State                   | City             | Cost<br>Adjustment<br>Factor | State          | City             | Cost<br>Adjustment<br>Factor |
|-------------------------|------------------|------------------------------|----------------|------------------|------------------------------|
| Alabama                 | Birmingham       | 0.96                         | Montana        | Billings         | 1.01                         |
| Alabama                 | Mobile           | 0.94                         | Nebraska       | Omaha            | 0.99                         |
| Alaska                  | Fairbanks        | 1.29                         | Nevada         | Las Vegas        | 1.00                         |
| Arizona                 | Phoenix          | 0.99                         | New Hampshire  | Portsmouth       | 0.93                         |
| Arizona                 | Tucson           | 0.96                         | New Jersey     | Jersey City      | 0.95                         |
| Arkansas                | Little Rock      | 0.96                         | New Mexico     | Albuquerque      | 1.00                         |
| California              | Alhambra         | 1.00                         | New York       | Long Island City | 1.02                         |
| California              | Los Angeles      | 0.99                         | New York       | Syracuse         | 0.99                         |
| California              | Riverside        | 0.98                         | North Carolina | Charlotte        | 0.97                         |
| California              | Stockton         | 1.00                         | North Carolina | Hickory          | 0.93                         |
| Colorado                | Boulder          | 1.04                         | North Carolina | Raleigh          | 0.96                         |
| Colorado                | Colorado Springs | 1.00                         | North Dakota   | Fargo            | 0.99                         |
| Colorado                | Denver           | 1.05                         | Ohio           | Columbus         | 0.99                         |
| Connecticut             | New Haven        | 1.01                         | Oklahoma       | Oklahoma City    | 0.97                         |
| Delaware                | Dover            | 0.97                         | Oklahoma       | Tulsa            | 0.98                         |
| District of<br>Columbia | Washington, D.C. | 0.99                         | Oregon         | Bend             | 1.03                         |
| Florida                 | Fort Meyers      | 0.92                         | Pennsylvania   | Norristown       | 0.90                         |
| Florida                 | Miami            | 0.96                         | Pennsylvania   | State College    | 0.92                         |
| Florida                 | Orlando          | 0.97                         | Rhode Island   | Providence       | 0.99                         |
| Florida                 | Tampa            | 0.95                         | South Carolina | Greenville       | 0.93                         |
| Georgia                 | Atlanta          | 0.98                         | South Dakota   | Sioux Falls      | 0.99                         |
| Hawaii                  | Honolulu         | 1.19                         | Tennessee      | Memphis          | 0.99                         |
| Idaho                   | Boise            | 0.98                         | Texas          | Austin           | 0.95                         |
| Illinois                | Chicago          | 1.00                         | Texas          | Dallas           | 0.98                         |
| Indiana                 | Indianapolis     | 1.00                         | Texas          | Houston          | 0.99                         |
| lowa                    | Des Moines       | 0.96                         | Texas          | San Antonio      | 0.98                         |
| Kansas                  | Wichita          | 0.98                         | Utah           | Ogden            | 0.95                         |
| Kentucky                | Louisville       | 0.94                         | Utah           | Provo            | 0.97                         |
| Louisiana               | Baton Rouge      | 0.99                         | Utah           | Salt Lake City   | 0.98                         |
| Maine                   | Portland         | 0.99                         | Vermont        | Burlington       | 1.01                         |
| Maryland                | Baltimore        | 1.02                         | Virginia       | Fairfax          | 0.94                         |
| Massachusetts           | Boston           | 1.02                         | Virginia       | Winchester       | 0.94                         |
| Michigan                | Ann Arbor        | 0.96                         | Washington     | Tacoma           | 1.02                         |
| Minnesota               | Minneapolis      | 1.00                         | West Virginia  | Charleston       | 0.96                         |
| Mississippi             | Biloxi           | 0.98                         | Wisconsin      | La Crosse        | 0.93                         |
| Missouri                | Springfield      | 0.95                         | Wyoming        | Casper           | 1.00                         |

\*Source: RSMeans Residential Cost Data 2020. Sample cities are listed in this table; check RSMeans for additional locations.

### INTENTIONALLY LEFT BLANK

# APPENDIX D: REFERENCE HOUSE

### **Reference House Characteristics**

The Reference House for this study is based on similar reference houses and site locations that were initially defined in a report by Home Innovation titled "Estimated Costs of the 2015 Code Changes"<sup>32</sup>; additional details from this report are provided below in the section Reference House Characteristics – Previous Studies.

The features and construction details of the standard Reference House for this study are shown in the tables below.

| Reference House Construction                              | Feature |
|-----------------------------------------------------------|---------|
| Stories above grade                                       | 2       |
| Bedrooms                                                  | 4       |
| Conditioned floor area, slab-on-grade houses, SF          | 2,600   |
| Conditioned floor area, basement houses, SF               | 3,680   |
| 1st floor area: 40' wide x 38' deep - (20'x22' garage)    | 1,080   |
| 2nd floor area: 40' wide x 38' deep                       | 1,520   |
| Ceiling height, first floor, ft.                          | 9       |
| Ceiling height, second floor, ft.                         | 8       |
| Walls, gross area above grade excluding rim and gable, SF | 2,652   |
| Window area, SF (model 90 SF per side)                    | 360     |
| Foundation, slab-on-grade                                 | CZ 2    |
| Foundation, basement                                      | CZ 4-6  |
| Foundation perimeter, LF                                  | 156     |
| Attic, below 7:12 slope roof                              | Vented  |

#### **Reference House Features**

#### **Reference House Construction Details**

|                                           | CZ 2 H         | ouston      | CZ 4 Baltimore |                | CZ 5 D        | Denver     | CZ 6 Minneapolis |            |
|-------------------------------------------|----------------|-------------|----------------|----------------|---------------|------------|------------------|------------|
| Reference House Modeling Inputs           | 2018 IECC      | 2021 IECC*  | 2018 IECC      | 2021 IECC*     | 2018 IECC     | 2021 IECC* | 2018 IECC        | 2021 IECC* |
| Walls: 2x4-16oc (CZ2-5); 2x6-16oc (CZ6)   | R13            |             | R13+5          | R13+10         | R13+5         | R13+10     | R20+5            |            |
| Slab-on-grade (CZ2)                       | RO             |             | na             |                | na            |            | na               |            |
| Basement walls, 8' high, 1' above grade   | na             |             | R13            |                | R19           |            | R19              |            |
| Ceiling, plus radiant barrier in CZ2      | R38            | R49         | R49            | R60            | R49           | R60        | R49              | R60        |
| Floors over garage                        | R13            |             | R19            |                | R30           |            | R30              |            |
| Windows, U-factor                         | 0.40           |             | 0.32           |                | 0.30          |            | 0.30             |            |
| Windows, SHGC (where NR, use 0.40)        | 0.25           |             | 0.40           |                | NR            | 0.40       | NR               |            |
| Interior shade fraction: 0.92-(0.21*SHGC) | 0.87           |             | 0.84           |                | 0.84          |            | 0.84             |            |
| External shading                          | none           |             | none           |                | none          |            | none             |            |
| House tightness, ACH50                    | 5              |             | 3              |                | 3             |            | 3                |            |
| Ducts, furnace, WH location               | attic          |             | basement       |                | basement      |            | basement         |            |
| Ducts in attic, % (where in attic)        | 70             |             | na             |                | na            |            | na               |            |
| Duct leakage, CFM25/100sf                 | 4              |             | 4              |                | 4             |            | 4                |            |
| Mechanical ventilation, CFM               | 64             |             | 75             |                | 75            |            | 75               |            |
| Thermostat set points, heating/cooling    | 72/75          |             | 72/75          |                | 72/75         |            | 72/75            |            |
| *2021                                     | ECC value is s | hown only w | here differer  | nt than the 20 | )18 IECC valu | le         |                  |            |

<sup>&</sup>lt;sup>32</sup> Estimated Costs of the 2015 Code Changes, Home Innovation Research Labs. <u>https://www.homeinnovation.com/trends\_and\_reports/featured\_reports/estimated\_costs\_of\_the\_2015\_irc\_code\_changes</u>

|                        | Unmet Showers per Beopt software |           |        |             |  |  |  |  |
|------------------------|----------------------------------|-----------|--------|-------------|--|--|--|--|
| Heat Pump Water Heater | Houston                          | Baltimore | Denver | Minneapolis |  |  |  |  |
| 50 gal at 125F         | 4.5%                             | 9.5%      | 11.0%  | 13.0%       |  |  |  |  |
| 50 gal at 140F         | 0.0%                             | 0.0%      | 0.9%   | 2.0%        |  |  |  |  |
| 80 gal at 125F         | 0.0%                             | 1.2%      | 2.0%   | 3.2%        |  |  |  |  |
| 80 gal at 140F         | 0.0%                             | 0.0%      | 0.0%   | 0.0%        |  |  |  |  |

#### Modeling Results of Unmet Showers for Heat Pump Water Heaters

The Reference Houses are assumed to have a 200-amp electrical service and panel. To determine if adding one electric vehicle (EV) charger circuit would drive the need to upgrade the electrical service, a load calculation was performed on an all-electric Reference House with a finished basement. The calculation is shown in the table below. The result shows that an electrical service upgrade is not required for adding one 40-amp EV charger circuit. Further, the 200-amp service could accommodate one 50-amp EV charger circuit, or a 20 kW supplemental heater for the heat pump system (the Reference House utilizes a 15 kW supplemental heater), but not both. An electrical service upgrade would be required for a second EV charger circuit and at some point, for a larger house or a house with additional electric loads such as a well, swimming pool, or electric baseboard heaters.

#### Electrical Service Load Calculation, 2017 NEC 220.82 Electrical Load Component kVA Lighting & general use, 0.003kVA/SF floor area 11.0 including basement Small appliance circuits 3.0 Laundry circuit 1.5 Range (oven and cooktop) 10.0 Water heater 4.5 Dishwasher 1.2 Dryer 5.0 Refrigerator 1.5 Sub-total 37.7 100% of first 10 kVA 10.00 40% of balance 11.08 Heat Pump & Air Handler, manufacturer product 4.22 data for 3-ton, 14 SEER system Supplemental heat, 65% of 15kW 9.75 Total, without electric vehicle (EV) circuit 35.05 7.60 EV Charger, Level 2, 40-amp circuit, 6.2-7.6 kW Total load (177.7-amps at 240-volts) 42.65 Total available (200-amps x 240-volts) 48.00

#### **Electric Service Load for an Electric Reference House**

# Reference House Characteristics – Previous Studies

For earlier studies by Home Innovation, baseline metrics were defined for four representative singlefamily houses, built to the IRC, to determine the cost impact of any code changes. The Reference Houses and their site locations were initially defined in a report titled "Estimated Costs of the 2015 Code Changes" prepared by Home Innovation for NAHB. These single-family houses were selected for their similarity to new home offerings in the six metropolitan areas selected as site locations – Miami, Dallas, Los Angeles, Seattle, New York, and Chicago, and their size proximity to a national average of 2,607 SF. Features of the Reference Houses are summarized in the next section.

The four residential building designs are based on the data contained in the Census Bureau report, *Characteristics of New Single-Family Construction Completed*<sup>33</sup>. The report provides information about building foundation type and number of stories for new single-family detached construction over the previous nine-year period.

#### New Construction Foundation Types

| Slab       | 54% |
|------------|-----|
| Crawlspace | 17% |
| Basement   | 30% |

#### **New Construction Number of Stories**

| One-story   | 53% |
|-------------|-----|
| Two-story   | 43% |
| Three-story | 3%  |

The Census data supports defining the four reference houses as follows to encompass approximately 85% of the last decade's new single-family construction:

- One-story on slab foundation
- Two-story on slab foundation
- One-story on basement foundation
- Two-story on basement foundation

The table below covers the locations where each type of reference house foundation would be pragmatically constructed. All these selected cities, except Chicago, lie within the top ten states for construction starts in 2013.<sup>34</sup> Chicago was selected to represent a Climate Zone 5 house.

| Reference House | Climate<br>Zone | 1    | 2    | 3        | 4        |
|-----------------|-----------------|------|------|----------|----------|
| Foundation      |                 | Slab | Slab | Basement | Basement |
| Miami           | 1               | Х    | Х    |          |          |
| Los Angeles     | 3               | Х    | Х    |          | Χ*       |
| Dallas          | 3               | Х    | Х    |          | Х*       |
| Seattle         | 4               | Х    | Х    | Х        | Х        |
| New York        | 4               | Х    | Х    | Х        | Х        |
| Chicago         | 5               |      |      | Х        | Х        |
| Fairbanks       | 8               |      |      | Х        | Х        |

#### **Sites for Reference Houses**

<sup>33</sup> www.census.gov/construction/chars/completed.html

<sup>&</sup>lt;sup>34</sup> www.census.gov/construction/bps/pdf/2013statepiechart.pdf

Based on the data compiled by Home Innovation from the *2013 Builder Practices Survey* (BPS)<sup>35</sup>, a nationwide annual survey, the typical Heating, Ventilation, and Cooling (HVAC) systems used in new houses are summarized in the table below. According to the BPS, 44% of new homes are cooled with a central air conditioner. These results influenced the selection of a gas furnace with central (electric) air conditioner as the HVAC system in each of the reference houses.

| Feature                                   | % of Stock |
|-------------------------------------------|------------|
| Furnace or Boiler, natural gas or propane | 48%        |
| Central Air Conditioner, electric         | 44%        |
| Standard Heat Pump with Backup Heat       | 41%        |
| Geothermal Heat Pump                      | 4%         |
| Electric furnace, baseboard, or radiant   | 4%         |
| Furnace or Boiler, oil                    | 2%         |

#### Typical HVAC Systems Supplied with New Houses

The statistics presented in the foregoing tables support defining the features of the Reference Houses as detailed in the table below.

| Reference House                     | 1              | 2              | 3              | 4        |
|-------------------------------------|----------------|----------------|----------------|----------|
| Square Feet                         | 2,607          | 2,607          | 2,607          | 2,607    |
| Foundation                          | Slab           | Slab           | Basement       | Basement |
| Number of Stories                   | 1              | 2              | 1              | 2        |
| Number of Bedrooms                  | 3              | 4              | 3              | 4        |
| Number of Bathrooms                 | 2              | 2.5            | 2              | 3        |
| Garage, attached                    | 2-car          | 2-car          | 2-car          | 2-car    |
| Heat, Gas Furnace                   | Yes            | Yes            | Yes            | Yes      |
| Cooling, (Electric) central air     | Yes            | Yes            | Yes            | Yes      |
| Hot Water, Gas 50-gallon tank       | Yes            | Yes            | Yes            | Yes      |
| 9 ft. Ceilings, 1 <sup>st</sup>     | Yes            | Yes            | Yes            | Yes      |
| 3 ft. Ceilings, 2 <sup>nd</sup>     | n/a            | n/a            | Yes            | Yes      |
| Energy Star appliances              | Yes            | Yes            | Yes            | Yes      |
| _aundry Room/Closet                 | Yes            | Yes            | Yes            | Yes      |
| Walls, 2x4 (Climate Zones 1 & 2)    | Yes            | Yes            | n/a            | n/a      |
| Walls, 2x6 (Climate Zones 3 thru 8) | n/a            | n/a            | Yes            | Yes      |
| Basement, Conditioned, Unfinished   | n/a            | n/a            | Yes            | Yes      |
| Furnace Location                    | Attic          | Attic          | Basement       | Basement |
| Water Heater Location               | Interior       | Garage         | Basement       | Basement |
| Window SF/% gross wall              | 360/18%        | 315/12%        | 360/18%        | 330/12%  |
| Cladding                            | Brick, 4 sides | Brick, 4 sides | Brick, 4 sides | Stucco   |
| Roof Pitch                          | 12/12          | 6/12           | 9/12           | 4/12     |

#### **Features of the Reference Houses**

The furnace location has been designated as a platform in the attic for both slab reference houses, a common practice in mild climates; furnace would be located within conditioned space for cold climates.

<sup>&</sup>lt;sup>35</sup> <u>www.homeinnovation.com/trends\_and\_reports/data/new\_construction</u>

